WGOMD Workshop on High Resolution Ocean Climate Modeling

Monday, April 7, 2014 to Wednesday, April 9, 2014
Event City: 


Steigenberger Conti Hansa Hotel, Kiel, Germany


Monday, 7 April, 2014 - Wednesday, 9 April, 2014


Workshop Proposal


The workshop will bring together international scientists, including early-career researchers, who are at the forefront of high-resolution ocean modeling for climate. With the recent increases in computational power, more and more modeling groups are conducting high-resolution ocean-ice and / or fully coupled earth system simulations. Most of these activities appear to be quite independent despite the fact that groups are encountering very similar challenges and trying to come up with similar solutions. Moreover, there is a need to understand new sensitivities and processes emerging in high-resolution ocean simulations. Thus, an important goal of our workshop is to foster collaboration between these groups to expedite progress.

High-resolution ocean modeling is needed for many scientific and societal applications, including regional climate information regarding sea level and extremes. These are among the WCRP Grand Challenges (GCs) and CLIVAR Research Opportunities (ResOps). Thus, the workshop will make important contributions to the goals of several WCRP GCs, particularly the ones on Regional Climate Information; Sea-Level Rise and Regional Impacts; and Science Underpinning the Prediction and Attribution of Extreme Events. Specifically, these GCs seek regional information on small spatial scales, requiring improved understanding of physical processes on these scales. Similarly, the workshop contributes to the goals of the CLIVAR Research Opportunities on Intra-seasonal, Seasonal and Inter-annual Variability and Predictability of Monsoon Systems; Decadal Variability and Predictability of Ocean and Climate Variability; Trends, Nonlinearities and Extreme Events; Marine Biophysical Interactions and Dynamics of Upwelling Systems; and Dynamics of Regional Sea Level Variability. These CLIVAR Research Opportunities complement WCRP Grand Challenges. We believe that high resolution ocean climate modeling will contribute to improving representation of some key physical processes, e.g., air-sea interaction and feedbacks, oceanic mesoscale, upwelling, and boundary currents, that are at the heart of these ResOps.

The workshop will allow the major climate modeling groups that are at the forefront of high-resolution ocean modeling to meet and take stock of the most recent advances. Mesoscale eddies are certainly the most spectacular and most energetic dynamics that emerge in ocean models at 1/4° resolution or higher, but the workshop will not be restricted to mesoscale eddies: we will discuss all climate-relevant processes that are deeply impacted by ocean model resolution. These include representation of western boundary currents and major fronts, air-sea coupling in upwelling areas, exchanges with marginal seas, processes on continental shelves, and emerging modes of air-sea interactions. The workshop will be organized in four types of sessions (see section 10 for further details): i) theoretical and process-oriented sessions to foster discussions on the dynamics behind the emerging behaviors of coupled climate models when a high-resolution ocean component is used; ii) an exchange session ("ongoing work") to allow the groups to present their more recent advances to each other and promote closer collaboration; iii) a technical session to share expertise about the challenges brought about by high-resolution ocean modeling – addressing, among others, numerical methods, massively parallel computing, storage strategies, and post-processing; and iv) a session on opportunities that high-resolution ocean models offer for the regional downscaling of global climate.

The workshop will have 6 or 7 sessions over three full days. The session lengths are not expected to be all equal. To accomplish one of our key goals, namely to foster collaboration between the groups to expedite progress, we will devote enough time in each session for meaningful discussions. Our tentative format for the workshop is:

Day 1:  - Introduction and review of current understanding (session 1)

              - Ongoing Work – State-of-the-Art Simulations (session 2)

Day 2:  - Ocean Physical Processes and Their Parameterization (session 3)

            - Technical Challenges (session 4)

Day 3:  - Interaction With Atmosphere and Cryosphere (session 5)

            - Downscaling (session 6)

            - Meeting conclusion: proposition of a new experimental Design (session 7)


Some details of these sessions are as follows:

Session 1: Introduction and Review of Current Understanding

Where are we coming from? Speakers will summarize the main conclusions and open questions from recent working groups, workshops, and relevant research programs.

1a. Mesoscale Eddies and Climate: How do eddies interact with the large-scale ocean circulation? How well are they represented in current models? State of the art as presented at the 2009 WGOMD workshop in Exeter and the recent literature. 

1b. Ocean-atmosphere interaction on frontal- and meso-scales: How do air-sea fluxes over ocean fronts and eddies impact the larger scale / lower frequency climate system, both in the atmosphere and ocean? Summarize outcomes from U.S. CLIVAR Working Group on Western Boundary Currents, recent workshops (e.g., Boulder August 2013) and recent literature.

1c. The Resolution Dependence of Climate Biases, Variability, and Sensitivity in Comprehensive Earth System Models:What do we know from available CMIP type integrations?

1d. New Modes of Coupled Variability: What new or different climate phenomena / variability might we expect when both the atmosphere and ocean are turbulent? Guidance from theory and idealized studies.

Session 2: Ongoing Work – State-of-the-Art Simulations

Representatives from different climate modeling efforts will present their current state-of-the-art simulations, the scientific questions they are applying high-resolution simulations to, and the main challenges they see to progress in high-resolution modeling. Each will list the questions they would like discussed during the meeting? Most will be from groups involved in coupled system modeling, but some may be from groups focused on ocean- or atmosphere-only simulations that are addressing relevant questions. Invited participants will include representatives from the following groups: CESM (both NSF and DoE efforts), GFDL, MIT, NASA GISS, FSU HYCOM, Hadley Center, University of Tokyo, JMA/MRI, JAMSTEC/ESC, DRAKKAR, GEOMAR, AWI, ACCESS/AusCOM, MPI Hamburg, IPSL, CNRM-CERFACS, EC-Earth, and CMCC.

Session 3: Ocean Physical Processes and Their Parameterization

The shift to higher resolution means that some processes previously parameterized or neglected become explicitly represented, while at the same time there are different requirements for subgrid scale closures. This session will address the challenges and opportunities for improving the representation of physical processses in high-resolution models, and possibly using high-resolution simulation results to improve parameterizations used in coarser models. Some specific topics to be covered are:

  • Eddies and their transports: upscale and downscale cascades and parameterizations. Scale adaptive parameterization - how to parameterize the unresolved part of the mesoscale energy spectrum; what are the effects of the submesoscales? Do we know how to parameterize them? Are the effects on larger scales captured by current eddy parameterization in lower resolution models?
  • Diapycnal mixing: vorticity-internal waves interactions; Can we do better at diapycnal mixing parameterizations when the mesoscale is resolved?
  • Western boundary current dynamics
  • Passages and overflows, marginal seas
  • Shelf-deep ocean interaction
  • Role of internal (intrinsic) ocean variability in generating low frequency climate variability

Session 4: Technical Challenges

While many groups are using the same codes for eddy-parameterized and eddy-resolved modeling, a number of groups are developing new modeling frameworks for multi-scale modeling. How do we parameterize, test, and verify ocean models with a typical resolution of, say, 0.2° to 0.5°?. What are the lessons learned so far and remaining challenges? The volume of output from high-resolution models can be overwhelming. How can we address the data-glut? Some specific topics to be covered are:

  • Numerical methods and alternative grids
  • Special requirements for coupling high-resolution global models
  • High-performance computing issues
  • Data management, pre- and post-processing tools

Session 5: Interaction With Atmosphere and Cryosphere

Some topics that we plan to cover include:

  • Processes of air-sea interaction and air-sea fluxes in the presence of mesoscale eddies
  • Air-sea coupling in upwelling areas
  • Processes in polar regions: sea ice and ice sheets
  • Ice – ocean coupling and instability issues at high resolution

Session 6: Downscaling and Upscaling

Can high-resolution ocean models be used to downscale climate scenarios for particular regions of interest? How do different methods compare? Topics to be considered include:

  • Nesting, regionally adaptive grids.
  • Is it possible to use atmospheric anomalies from low-resolution climate simulations to force ocean-ice models?  

Session 7: Meeting conclusion: proposition of a new experimental Design

There has thus far been little coordination of experimental design for high-resolution modeling compared to the relatively well-established protocols for CMIP and CORE experiments. Are there common points of reference that can be exploited to help advance the state-of-the-art and facilitate sharing among groups?

  • Methodologies to explore sensitivities, what is different when using eddy-resolving ocean models? Are ensemble strategies required? How would we design sensitivity tests such as freshwater hosing experiments?
  • Observations for evaluating eddy-resolving simulations. Identifying common metrics for assessing high-resolution simulations.
  • New CORE protocol(s)

View Workshop in Live Streaming


The format will be Windows Media Video (wmv). Windows Media Player should not have any problems with that. VLC Media Player (http://www.videolan.org/vlc/) can be recommended for other systems and as alternative player on MS Windows. If you have any problems please email Markus Scheinert, GEOMAR.


Monday, April 7, 2014

08:15 - 08:45 Registration
08:45 - 08:50 Welcome and logistics - C. Böning (GEOMAR, Germany)
08:50 - 09:00 Workshop objectives - A. M. Treguier (IFREMER)
09:00 - 09:15 WCRP and CLIVAR Grand Challenges - D. Stammer (U. Hamburg, Germany)

Session 1:Introduction and Review of Current Understanding (Chair: A. M. Treguier, IFREMER, France)

(25 minute talk, 10 minute questions and discussion)

09:15 - 09:50
S. Griffies (GFDL/NOAA, USA) - Mesoscale Eddies and Climate: How do eddies interact with large-scale ocean circulation? How well are they represented in current models? State of the art as presented at the 2009 WGOMD workshop on mesoscale eddies and the recent literature.

09:50 - 10:25
J. Small (NCAR, USA) - Air-Sea interaction at western boundary currents: an updated review (abstract)

10:25 - 10:55 Break

10:55 - 11:30
H. Hasumi (U. Tokyo, Japan) - Resolution dependence of climate biases, variability and sensitivity in comprehensive Earth System Models (abstract)

11:30 - 12:05
W. Dewar (FSU, USA) - Thoughts on (Ocean) Eddy Resolving Coupled Models (abstract)

12:05 - 13:15 Lunch

Session 2: Ongoing Work – State-of-the-Art Simulations (Chair: G. Danabasoglu, NCAR, USA)

Representatives from different climate modeling efforts will present:

(1) a very brief summary of their current state-of-the-art simulations;
(2) the scientific questions they are applying high-resolution simulations to;
(3) the main challenges they see to progress in high-resolution modeling;
(4) a list of the questions they would like discussed during the meeting.

(10 minute talk + 2 minutes for change) 1 slide maximum for each of the items listed above

13:15 - 15:15

H. Tsujino (JMA/MRI, Japan) - Current efforts of ocean-climate modeling using high-resolution ocean models in JMA/MRI (abstract)
H. Sasaki (JAMSTEC, Japan) - Towards a realistic submesoscale resolving simulation (abstract)
H. Hasumi (U. Tokyo, Japan) - Report on ongoing work in COCO-MIROC group
P. Spence (U. New South Wales, Australia) - Climate Modeling Initiatives within the ARC Centre of Excellence Climate System Science
M. Roberts (Met Office, UK) - High resolution ocean/climate modelling in the UK
M. Bentsen (Uni Climate, Norway) - Quarter degree resolution ocean component of the Norwegian Earth System Model
W. Hazeleger (KNMI, The Netherlands) - EC Earth
J.-S. von Storch (MPI-M, Germany) - High-resolution ocean modelling at the MPI (abstract)

15:15 - 15:45 Break

15:45 - 17:45

P. Braconnot, G. Madec (IPSL, France) - Towards coupling with 1/4° océan for climate change experiments at IPSL (abstract)

T. Penduff for L. Terray (CERFACS) - High resolution coupled modeling at CERFACS (CERFACS/CNRM CMP5 Group)
S. Masina (CMCC, Italy) - Ocean modelling at CMCC (abstract)
C. Böning (GEOMAR, Germany), A. M. Treguier (IFREMER, France), G. Nurser (NOC, UK) - DRAKKAR 2003-2013: from eddy permitting to eddy resolving global ocean
E. Chassignet (FSU, USA) - HYCOM High Resolution Simulations
F. Bryan (NCAR, USA) - High Resolution Comunity Earth System Model (CESM)
M. Maltrud (LANL, USA) - US Department of Energy High Resolution Climate Modeling
M. Winton (GFDL, USA) - Has Coarse Ocean Resolution Biased Simulations of Transient Climate Sensitivity? (abstract)
J. Marshall (MIT, USA) - Role of the Ocean in Transient Climate Change

17:45 - 19:15 Ice-breaker reception at GEOMAR


Tuesday, April 8, 2014

Session 3: Ocean Physical Processes, air-sea interactions, and their parameterization (Chair: H. Drange, U. Bergen, Norway)

The shift to higher resolution means that some processes previously parameterized or neglected become explicitly represented, while at the same time there are different requirements for subgrid scale closures. This session will address the challenges and opportunities for improving the representation of physical processes in high-resolution models, and possibly using high-resolution simulation results to improve parameterizations used in coarser models.

(15 minute talk, 5 minute questions)
09:20 - 09:40 B. Arbic (U. Michigan, USA) - Inserting tides and topographic wave drag into high-resolution eddying simulations (abstract)
09:40 - 10:00 E. Chassignet (FSU, USA) - Spreading of Denmark Straight overflow water
10:00 - 10:20 C. Eden (U. Hamburg, Germany) - A framework for energetically consistent ocean models (abstract)

10:20 - 10:50 Break

10:50 - 11:10 M. Nikurashin (UTAS, Australia) - Diapycnal mixing and form drag due to small-scale topography
11:10 - 11:30 J. Marshall (MIT, USA) - Using ocean-only models to study the role of the ocean in climate change (abstract)
11:30 - 11:50 B. Taguchi (JAMSTEC, Japan) - Large-scale ocean-atmosphere interaction enhanced by oceanic frontal variability in the North Pacific (abstract)
11:50 - 12:10 M. Latif (GEOMAR, Germany) – Mid-latitude Ocean Weather Influence on North Pacific Sector Climate (abstract)

12:10 - 13:20 Lunch

13:20 - 13:40 R. Hallberg (GFDL, USA) - Challenges in Modeling Ice / Ocean Interactions MOM6 SIS sea ice massShelf sideWeddell Sea icebergs (abstract)
13:40 - 14:00 A. Hogg (ANU, Australia) - Submesoscales in the Southern Ocean (abstract)
14:00 - 14:20 B. Fox Kemper (Brown U., USA) - The Importance of Scale-Aware Physical Parameterizations Mesoscale to Submesoscale Permitting Simulations (abstract)
14:20 - 14:40 A. Leboissetier (NASA GISS) - Interactions Between Sea Ice and Mesoscale Eddies

14:40 - 15:10 Discussion

15:10 - 15:40 Break

Session 4: Technical Challenges (Chair: C. Böning, GEOMAR, Germany)

While many groups are using the same codes for eddy-parameterized and eddy-resolved modeling, a number of groups are developing new modeling frameworks for multi-scale modeling. How do we parameterize, test, and verify ocean models with a typical resolution of, say, 0.2° to 0.5°?. What are the lessons learned so far and remaining challenges? The volume of output from high-resolution models can be overwhelming. How can we address the data-glut?

(15 minute talk, 5 minute questions)

T. Penduff (LGGE, France) - Ensembles of eddying ocean simulations for climate: the OCCIPUT prototype (abstract)
15:40 - 16:00 M. Maltrud (LANL, USA) - Ocean Modeling using MPAS-O (abstract)
16:00 - 16:20 S. Danilov (AWI, Germany) - Ocean modeling on unstructured meshes (abstract)
16:20 - 16:40 A. Adcroft (Princeton U., USA) - Vertical coordinates in high resolution models
16:40 - 17:30 Discussion and wrap up

19:00 Dinner


Wednesday, April 9, 2014

Session 5: Downscaling (Chair: S. Marsland, CSIRO ACCESS, Australia)

Can high-resolution ocean models be used to downscale climate scenarios for particular regions of interest? How do different methods compare?

(15 minute talk, 5 minute questions)

09:00 - 09:20 E. Curchitser (Rutgers U., USA) - Multi-scale modeling of boundary currents
09:20 - 09:40 T. Tatebe (JAMSTEC, Japan) - Atmospheric responses to the North Pacific mid-latitude SST induced by western boundary currents represented in MIROC5 coupled with a nested regional ocean model (abstract)
09:40 - 10:00 A. Biastoch (GEMOAR, Germany) - Nested ocean modelling
10:00 - 10:20 S. Masson (IPSL, France) - Upscaling processes in a multi-scale ocean-atmosphere coupled model
10:20 - 10:40 Discussion

10:40 - 11:10 Break

Session 6: Metrics and Evaluation (Chair: B. Taguchi, JAMSTEC, Japan)

(15 minute talk, 5 minute questions)

11:10 - 11:30 S. Bishop (NCAS) - Model metrics and validation using ocean heat transport: New insights from observations (abstract)
11:30 - 11:50 D. Stammer (U. Hamburg, Germany) - Evaluating models with remote sensing
11:50 - 12:10 S. Marsland (CSIRO ACCESS, Australia) - The WGNE/WGCM Climate Model Metrics Panel

12:10 - 13:20 Lunch

13:20 - 13:40 M. Balmaseda (ECMWF, UK) - Validating models with in situ observations
13:40 - 14:00 R. Bourdallé-Badie (MERCATOR, France) - Recommendations on metrics and the evaluation of high resolution model & reanalysis
14:00 - 14:20 Discussion

Session 7: Meeting Conclusion and Discussion: Proposals for a new coordinated experiment design (Chair: F. Bryan, NCAR,USA)

This session will be structured around topics, including the ones emerging from session 2 presentations. Some thoughts include the following:

There has thus far been little coordination of experimental design for high-resolution modeling compared to the relatively well-established protocols for CMIP and CORE experiments. Are there common points of reference that can be exploited to help advance the state-of-the-art and facilitate sharing among groups? How best could we share high-resolution simulation data and perform coordinated analysis? Specific scientific questions that only ongoing/planned high-resolution ocean climate simulations can address.

Discussion (F. Bryan)

PRIMAVERA, HighResMIP and CORE proposals (M. Roberts)

17:00 Adjourn

Anne Marie Treguier (Chair), Laboratoire de Physique des Océans, France

Claus Böning (Local Host), GEOMAR Helmholtz Centre for Ocean Research, Germany

Frank Bryan, National Center for Atmospheric research, USA

Bunmei Taguchi, Japan Agency for Marine – Earth Science and Technology, Japan

Helge Drange (WGOMD co-chair), University of Bergen, Norway

Gokhan Danabasoglu (WGOMD co-chair), National Center for Atmospheric Research, USA

Anna Pirani (CLIVAR), ICTP, Trieste, Italy

A key outcome of the workshop is the interaction and information exchange that it will facilitate among various groups that are working on different aspects of high resolution ocean climate modeling.

Workshop participants will be encouraged to disseminate the outcomes of the workshop through a planned Special Issue of CLIVAR Exchanges. A workshop report will also be included in this special issue.

A major ongoing activity of the WGOMD is an inter-comparison of ocean models subject to CORE inter-annual atmospheric forcing, which builds on previous WGOMD efforts. So far, this activity has been largely confined to simulations with coarse resolution ocean models. In the workshop and the subsequent WGOMD panel meeting, we will explore developing a protocol for COREs for use in high-resolution ocean modeling.

We also plan to provide input to the next phase of CMIP, i.e., CMIP6, regarding high-resolution ocean climate modeling.


The Workshop will be hosted by the GEOMAR Helmholtz Centre for Ocean Research at the Steigenberger Conti Hansa Hotel, Schloßgarten 7, 24103 Kiel, Germany. The Steigenberger Conti Hansa Hotel is opposite the Baltic Sea waterfront and the Kieler Förde, at the centre of the city. From here you can enjoy the maritime ambiance of the city. The airport Hamburg-Fuhlsbüttel is within comfortable reach of the hotel by bus, rail or car.

Hotel block bookings

GEOMAR has reserved a block of rooms at the Steigenberger Conti Hansa Hotel.The Standard rate is € 110 per night including breakfast and WLAN, to be booked by 21 February 2014. The booking code is "CLIVAR" - please book by sending the hotel an email. The code does not work with the hotel website booking form.

Steigenberger Conti Hansa Hotel (Meeting Venue)
Schlossgarten 7
24103 Kiel, Germany
Phone +49 431 5115-0
E-Mail: kiel@steigenberger.de
Internet: www.kiel.steigenberger.de

GEOMAR has reserved an additional contingent of rooms at the Nordic Hotel am Kieler Schloss. Located in the heart of the old town of Kiel and also close to the seaside it is only a few steps away from the promenade.
The Standard rate is € 49 per night including breakfast, WLAN. The block booking is set until 10 March 2014. The code is "CLIVAR".

Nordic Hotel am Kieler Schloss (within walking distance - 0,9 km)
Dänische Strasse 12-16
24103 Kiel, Germany
Phone +49 431 53 41 620
E-Mail: schloss@nordic-hotels.com
Internet: www.nordic-hotels.com

Further hotel options

InterCityHotel Kiel
The InterCityHotel Kiel is located in the city centre in the immediate vicinity of the station.

Hotel am Schwedenkai
The station, the pedestrian zone, the Town Hall, numerous restaurants and the Kiel harbor are within walking distance.

Hotel Kieler Yacht Club
The Hotel Kieler Yacht Club is one of the most venerable houses in the city of Kiel.

Romantik Hotel Kieler Kaufmann
Classic location in the middle of an extensive park area, which is still only minutes away from Kiel’s city center.

Other accommodation options

Renting a studio, or a larger appartment to share, can also be an option. Try looking at Airbnb.com.


Registration Fee

A 50 EUR registration fee has been set to cover all coffee breaks and lunches. All participants will be required to pay the registration fee in cash on site.


Getting to Kiel

Hamburg-Fuhlsbüttel airport is 94km from Kiel. It will take ~1.5 hours to get from the airport to Kiel.

Airport Shuttle (Kielius): The Kielius-airport-bus can be used to travel between Kiel and Hamburg airport-terminal (via Neumünster). Tickets cost 33 € for a round trip. You can also combine the Kielius shuttle and a taxi service from the hotel to the station for € 44. The total transit time is ~1 hour 25 minutes. You can buy the ticktes directly at the bus. The bus stop is located right outside the terminal (look up to see the bus signs when you exit the terminal).

The Kielius bus time table can be found here.

Vineta Taxi: 0431/77080 in Kiel is reccommended by the Kielius bus company. Alternatively taxis can be found at Kiel tran staion, next to the bus station.

Local Contact

Sabine Niewels
Assistenz FB1-TM

Helmholtz-Zentrum für Ozeanforschung Kiel
FB1 - Ozeanzirkulation und Klimadynamik/FE Theorie und Modellierung
Düsternbrooker Weg 20
D-24105 Kiel

Tel.: +49-431-600-4001
Fax:  +49-431-600-4012

Review Talks

Hiroyasu Hasumi - University Tokyo, Japan
William Dewar - FSU, USA
Stephen Griffies - NOAA/GFDL, USA
Justin Small - NCAR, USA

Tentative list of speakers

Alistair Adcroft - NOAA/GFDL, Princeton University, USA
Brian Arbic - University of Michigan, USA
Magdalena Balmaseda - ECMWF, UK
Mats Bentsen - Uni Climate, Norway
Arne Biastoch - GEOMAR, Germany
Claus Boening - GEOMAR, Germany
Malte Braak - University of Kiel, Germany
Pascale Braconnot - IPSL, France
Frank Bryan - CESM NSF, USA
Eric Chassignet - FSU HYCOM, USA
Enrique Curchitser - Rutgers University, USA
Sergey Danilov - AWI, Germany
Carsten Eden - University Hamburg, Germany
Baylor Fox-Kemper - Brown University, USA
Robert Hallberg - NOAA/GFDL, USA
Wilco Hazeleger - KNMI, Netherlands
Andy Hogg - ANU, Australia
Mojib Latif - GEOMAR, Germany
Matthew Maltrud - CESM DOE, USA
John Marshall - MIT, USA
Simona Masina - CMCC, Italy
Sebastien Masson - IPSL, France
Maxim Nikurashin - UTAS, Australia
Thierry Penduff - LGGE, France
Malcom Roberts - Hadley Center Met Office, UK
Hideharu Sasaki - JAMSTEC, Japan
Paul Spence - ACCESS, Australia
Jin-Song von Storch - MIP-M, Germany
Detlef Stammer - Univeristy of Hamburg, Germany
Bunmei Taguchi - JAMSTEC, Japan
Hiroaki Tatebe - JAMSTEC, Japan
Laurent Terray - CERFACS, France
Anne Marie Treguier - IFREMER, France
Hiroyuki Tsujino - JMA/MRI, Japan
Jin-Song von Storch - MPI, Germany
Mike Winton - NOAA/GFDL, USA
Dongliang Yuan - IOCAS, China
Romain Bourdallé-Badie - MERCATOR, France

Additional Participants

Stuart Bishop - NCAR, USA
Gokhan Danabasoglu - NCAR, USA
Helge Drange - U. Bergen, Norway
David Holland - Courant Institute, USA
Yoshiki Komuro - JAMSTEC, Japan
Anthony Leboissetier - NASA GISS, USA
Maxwell Kelley - NASA GISS, USA
George Nurser - National Oceanography Center, UK
Simon Marsland - CSIRO, Australia
Anna Pirani - CLIVAR, Italy
Gurvan Madec - IPSL, France
Andrea Storto - CMCC, Italy
Dorotea Iovino - CMCC, Italy
Dmitri Sidorenko - AWI, Germany
Helge Goessling, AWI - Germany
Dewi Le Bars, Utrecht University, The Netherlands


Air-Sea interaction at western boundary currents: an updated review
Justin Small
Processes of air-sea interaction at western boundaries have been intensively studied of late, due to the finding that currents such as the Gulf Stream and Kuroshio can affect the upper troposphere. This talk updates the review papers of Kelly et al. 2010 and Kwon et al. 2010, emphasizing climate response to western boundary currents. It will include a summary of a Workshop on Frontal Scale Air-Sea interaction held in August 2013 in Boulder.

Resolution dependence of climate biases, variability and sensitivity in comprehensive Earth System Models
Hiroyasu Hasumi
, Atmosphere and Ocean Research Institute, The University of Tokyo, Japan
This talk reviews performance of AOGCMs with eddy-permitting or eddy-resolving ocean component in comparison to those with coarse-resolution ocean component. Five models are picked up here (CCSM, GFDL-CM, HiGEM, MPI-ESM and MIROC) whose dependence of performance on ocean resolution is well described in published documents. High ocean resolution leads to significant reduction of climate biases commonly among these models in some aspects, such as those in the equatorial Pacific region. As for the aspects which still remain to be improved, different models sometimes look to show different behaviors in terms of dependence on ocean resolution. It is difficult to identify the causes of such biases from these existing model experiments because they are differently designed and analyzed. Well-coordinated model experiments and metrics for analysis (MIP) would help improve our understanding on dependence of climate biases on ocean model resolution.

Thoughts on (Ocean) Eddy Resolving Coupled Models/strong>
William Dewar
We review the relatively short history of coupled models with resolved turbulence in both the atmosphere and ocean, culminating in the recent studies of the CCSM at eddy resolution. Some guidance as to the nature of the low frequency variability in the coupled mid-latitudes has arisen from earlier process coupled climate models, and those results are discussed.

Current efforts of ocean-climate modeling using high-resolution ocean models in JMA/MRI
Hiroyuki Tsujino
, JMA/MRI, Japan
Our current efforts on high-resolution ocean modeling are separated into three parts, each of which aims to extend the eddyless global model used for CMIP5/CORE: (1) Increasing the horizontal resolution to about 10 km for the global ocean. (2) Hierarchically nesting 10 km and 2 km models in the western North Pacific Ocean for ocean regional downscaling. (3) Nesting two regional models in the subtropical North Atlantic and Pacific Ocean for global climate modeling. We will discuss what scientific questions we will be able to answer using these models and what kind of challenges we are facing in extracting best performance, in terms of reproducibility, from these models.

Toward a realistic submesoscale resolving simulation
Hideharu Sasaki, JAMSTEC, Japan
Recent studies using idealized high resolution simulations suggested importance of submesoscales due to their contributions to mesoscale and large scale circulation through inverse energy cascade. Furthermore, the ocean biological fields and their variations are also influenced by large vertical motions induced by the submesoscales. Considering an ongoing North Pacific submesoscale permitting simulation at 1/30 degree resolution with NPZD biological model, the expected contributions of realistic submesoscale resolving simulation are discussed in this presentation. Combination with observations, high-resolution in-situ and satellite observations such as coming high-resolution SSH data by SWOT and COMPIRA missions should be needed to study submesoscales in a real ocean. An era of submesoscale resolving simulation in a basin and global domain is coming soon.

High-resolution ocean modelling at the MPI
Jin-Song von Storch
, Max-Planck Institute for Meteorology, Germany
The high-resolution ocean modelling activity at MPI was initiated by the German consortium project STORM. STORM, launched in cooperation with the CliSAP cluster of excellence of University Hamburg, DKRZ and other partners within Germany, aims at climate simulations at the highest possible resolution. Ocean simulations at one tenth degree resolution were performed both in stand-alone and coupled mode with the Max-Planck Institute Ocean Model (MPIOM) at a tripolar grid. The stand-alone run, forced by the NCEP-NCAR reanalysis-1 data from 1948 to 2013 following a 25-year spin-up phase, was widely used within the German oceanographic community for studying oceanic circulation and its variability on global and regional scales.  Two multi-decadal (up to 60 years) coupled runs (coupled to ECHAM6/T255L95) provided the first experience and served to pave the way for further advancing high-resolution climate simulations at the MPI and in Germany.
At the MPI, the high-resolution ocean modelling activity forms a basis for research on the following three topics. The first one deals with the ocean mechanical energy cycle (von Storch et al. JPO, 2012) and the roles of meso-scale eddies and internal waves for the energy pathways.  Here, internal waves are refereed not only to the wind-induced near-inertial waves, but also to waves spontaneously generated by eddying flows, as well as internal tides that are simulated by implementing the lunisolar tidal potential into the 1/10 degree MPIOM (Mueller et al. GRL, 2012, Rimac et al., GRL 2013, Li. et al. 2014, in preparation). Secondly, we are concerned with the parametrization of meso-scale eddies and other small-scale processes. Previous works have been mainly focused on the mean eddy forcing, whereby leaving the fluctuations about the mean eddy forcing out. Using the STORM simulation, we were able to show for the first time that the magnitude of the fluctuations is about one order of magnitude or more larger than the magnitude of the mean eddy forcing, indicating that a parametrization of meso-scale eddies should be augmented by a stochastic component (Li and von Storch, JPO, 2013). The final goal of high-resolution activity is to investigate the impact of meso-scale eddies on the stability and sensitivity of AMOC, whereby addressing the questions of whether and how meso-scale eddies alter the AMOC change in a warmer climate. For this purpose, century long simulations performed with an eddy-resolved OGCM coupled to an AGCM are needed. To achieve this goal, high-resolution coupled modelling needs to be further matured and a further increase in high-performance computing capacity is most welcome.

Towards coupling with 1/4° océan for climate change experiments at IPSL.
Pascale Braconnot
, IPSL, France
During the presentation I will answer the different points listed in the agenda, starting from the reason why we decided to have only a 2° ocean for CMIP5 and listing our future plans. Then I'll highlight some scientific questions for which there is an interest to have a high resolution ocean, and then scientific questions concerning the ocean-atmosphere coupling, surface fluxes or heat and water budgets.

An overview of ocean modelling activities at CMCC 
Simona Masina
, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy
We review the ocean models at eddy-permitting and eddy-resolving configurations presently used and under development at CMCC for a wide range of applications: from estimates of the past ocean state to global ocean forecasting. The ocean model is NEMO used at resolutions from ¼ to 1/16 degree. We will briefly present results from: 1) data assimilation system, 2) coupling with a marine biogeochemical model and 3) one nested regional configuration.

Ocean Modeling using MPAS
Mathew Maltrud and Todd Ringler
, Los Alamos National Laboratory
The Modeling for Prediction Across Scales (MPAS) framework is an emerging tool for use in simulating geophysical flows.  Based on the use of Spherical Centroidal Voronoi Tesselations (SCVTs), this unstructured mesh formulation allows for arbitrary local grid refinement while still simulating global circulation.  We will be presenting some background and results from MPAS-O (Ocean) simulations in both idealized and realistic configurations, and comment on the current status and challenges that remain before MPAS-O can become a component in a state of the art fully coupled Earth System Model.

Has Coarse Ocean Resolution Biased Simulations of Transient Climate Sensitivity?
Michael Winton
We investigate the influence of ocean component resolution on simulation of climate sensitivity using variants of the GFDL CM2.5 climate model incorporating eddy-resolving (1/10o) and eddy-parameterizing (1o) ocean resolutions.  Two parameterization configurations of the coarse-resolution model are used yielding a three-model suite with significant variation in the transient climate response (TCR).  The variation of TCR in this suite and in an enhanced group of 10 GFDL models is found to be strongly associated with the control climate Atlantic meridional overturning circulation (AMOC) magnitude and its decline under forcing.  We find it is the AMOC behavior rather than resolution per se that accounts for the TCR differences, although the impact of resolution on the AMOC circulation itself is uncertain.  A smaller difference in TCR stems from the eddy-resolving model having more Southern Ocean warming than the coarse models due to reduced trapping of heat beneath the halocline.

Inserting tides and topographic wave drag into high-resolution eddying simulations
Brian Arbic,
University of Michigan, USA
I will discuss an ongoing collaboration between University of Michigan/Naval Research Laboratory/Florida State University, in which the main goal is to insert tides into high-resolution eddying simulations of the HYbrid Coordinate Ocean Model (HYCOM).  I will briefly touch upon the mechanics of this tidal embedding, the motivation behind it, and example oceanographic applications.  I will also discuss former University of Michigan postdoc David Trossman's results on the insertion of parameterized topographic lee wave drag into eddying simulations of HYCOM and the Parallel Ocean Program (POP).  These latter simulations do not include tides; the wave drag is meant to simulate energy dissipation due to breaking of internal waves generated by geostrophic flows over the rough seafloor.  We show that topographic wave drag contributes significantly to the energy budgets of global 1/12 and 1/25 degree simulations of HYCOM, and global 1/10 degree POP.

A framework for energetically consistent ocean models
Carsten Eden
, Institut für Meereskunde, KlimaKampus University of Hamburg, Germany
A framework to construct realistic global ocean models in Boussinesq approximation with a closed energy cycle is discussed.
In such a model, the energy related to the mean variables interact with all parameterized forms of energy without any spurious energy sources or sinks.
This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. An exemplaric numerical implementation of a realistic global ocean model including isopycnal mixing and stirring by meso-scale eddies and the recently developed IDEMIX model for internal waves, shows a global energy residual of only 20W.

Ensembles of eddying ocean simulations for climate: the OCCIPUT prototype
Thierry Penduff,
LGGE, France
Academic models have illustrated the chaotic behavior of the ocean circulation at high Reynolds number, not only in terms of mesoscale turbulence but also in double-gyre or ACC-like current systems, up to decadal timescales. Unlike laminar ocean models used in most current climate projections, eddying OGCMs also spontaneously generate an substantial interannual-to-decadal variability under repeated seasonal forcing, with a stochastic character and a marked SST signature in regions where air-sea fluxes are maximum in Nature. Whether and how this ocean-driven low-frequency intrinsic variability may ultimately impact the climate predictability is an important but unsettled question.
A preliminary step toward this question is to better describe the stochastic component of the low-frequency ocean variability, with a focus on climate-relevant indexes. The OCCIPUT project aims at performing a 50-member ensemble of 1/4° global ocean/sea-ice hindcasts driven by the same 1958-present atmospheric forcing. Initial perturbations are expected to grow and cascade toward long space and time scales. We expect this eddying ensemble to provide a probabilistic description of the ocean state and evolution over the last decades, and a measure of the actual constraint exerted by the atmosphere on interannual-to-decadal ocean variability.

Using ocean-only models to study the role of the ocean in climate change
John Marshall
, Massachusetts Institute of Technology, USA
We study the role of the ocean in setting the patterns and timescale of the transient response of the climate to anthropogenic greenhouse gas and ozone hole forcing. A novel framework is set out which involves (i) integration of an ocean-only model perturbed by thermal, freshwater, and/or mechanical (wind) forcing and (ii) damping of sea-surface temperature at a rate controlled by a 'climate feedback' parameter.
We organize our discussion around ‘Climate Response Functions’ (CRFs) i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the SST response, providing a context for discussion of the global patterns of warming and cooling.
A broad correspondence between the evolution of the anthropogenic temperature in our simplified ocean-only model and that of coupled climate models perturbed by a step increase in CO2 is observed, indicating that the approach has some merit. The southern ocean plays a special role in acting as a thermostat with both mean and eddy processes contributing.
Finally we suggest how we might rather simply modify the CORE-I protocol in a manner that would allow the ocean modeling community to begin to address the role of the ocean in shaping the broad spatial patterns and timescales of anthropogenic climate change.

Large-scale ocean-atmosphere interaction enhanced by oceanic frontal variability in the North Pacific
Bunmei Taguchi
, JAMSTEC, Japan
In the North Pacific, western boundary current extensions (WBCs) exhibit large interannual-to-decadal variability, as the response of the ocean to basin-scale wind forcing tends to focus on narrow oceanic frontal zones such as Kuroshio Extention (KE) and subarctic front (SAF). Whether such WBC variability can have any up-scale effects on well-known basin-scale feature of North Pacific decadal variability (PDV) is an open question.  Here we argue that the WBC variability, particularly the latitudinal shift of the SAF, has prominent basin-scale impacts both on the atmosphere and the ocean in the North Pacific. Namely, our analysis of historical observations and a long-term, ocean front-resolving coupled GCM simulation consistently suggest that decadal-scale SST anomalies induced by the SAF’s latitudinal shift can excite large-scale, deep atmospheric circulation anomalies similar to the Pacific–North American (PNA) pattern during early winter, through the modulation of storm track activity and its feedback forcing. On the ocean side, the SAF is characterized by large gradients of upper ocean mean spiciness (temperature that is density-compensated with salinity). Thus, the shift of the SAF also generates distinct upper ocean temperature anomalies that are density-compensated with salinity and can be advected eastward by background mean flows. In our CGCM simulation, the oceanic spiciness anomalies thus generated and propagated lead to large decadal-scale variability of the upper ocean heat content in the WBC region. These results suggest that the WBC region in the North Pacific is a crossroad that bridges large-scale atmospheric circulation variations and upper-ocean heat content variability on decadal time scale. Better simulating the WBC variability in climate models may provide additional source of variability and predictability for PDV.

Mid-latitude Ocean Weather Influence on North Pacific Sector Climate
Mojib Latif1,2, Guidi Zhou1, Richard J. Greatbatch1,2, Wonsun Park1

1GEOMAR Helmholtz Centre for Ocean Research Kiel, 2University of Kiel, Germany
Ocean-atmosphere interactions play a key role in climate variability on a wide range of time scales from seasonal to decadal and longer. The extra-tropical oceans are thought to be primarily forced by the atmosphere on seasonal to interannual time scales, but also to exert noticeable feedbacks on the latter especially on decadal time scales. Yet the large-scale atmospheric response to anomalous extra-tropical sea surface temperature (SST) is still under debate. Here we show, by means of dedicated high-resolution atmosphere model experiments, that extra-tropical North Pacific SST variability on time scales of days, i.e. ocean weather, needs to be resolved to force a statistically significant large-scale atmospheric response which is consistent with observations. This suggests that daily extra-tropical ocean fluctuations must be i) simulated by the ocean components and ii) resolved by the atmospheric components of global climate models to enable realistic simulation of North Pacific Sector climate variability. This has far reaching implications for climate modelling and prediction, as the role of the extra-tropical oceans in climate variability and predictability may have been underestimated.

Challenges in Modeling Ice / Ocean Interactions
Robert Hallberg
There are climatically important interactions between the ocean and ice in at least 4 distinct forms - sea-ice, icebergs, ice-shelves, and tidewater glaciers. This talk discusses the technical challenges of numerically modeling the interactions between the oceans and each of these forms of ice, with a particular emphasis on sea-ice.  The dynamics of sea-ice and the ocean are very tightly linked, and there are multiple different numerical instabilities that can arise when sea-ice and the ocean's are treated as dynamically separate components, several of which have been realized in GFDL's high-resolution coupled models. This talk will present evidence that suggests that most promising approach for avoiding these sea-ice/ocean coupling instabilities is to devise numerical approaches that respect the strong dynamical and thermodynamic coupling between the ocean and ice, and embeds the solution of the sea-ice momentum equations within the ocean's momentum solver, rather than treating them as distinct and isolated components.

Submesoscales in the Southern Ocean
Andrew Hogg

Australian National University, Australia
The summertime phytoplankton bloom near the Kerguelen Plateau is thought to arise from natural iron fertilisation, but the mechanisms of iron supply to the euphotic zone in this region are poorly understood. We propose that fine-scale (sub-mesoscale) dynamics, which have been shown to significantly increase vertical transport in other parts of the ocean, may be a critical source of iron to the surface waters of the Southern Ocean.
To test this hypothesis we have conducted the first sub-mesoscale-resolving study of flow and vertical transport in the Kerguelen Plateau region. A transition in horizontal resolution from mesoscale-resolving (1/20o) to 1/80o resolves sub-mesoscale filamentary frontal structures in which vertical velocities are dramatically higher (and are consistent with available observations). Lagrangian tracking shows that water is advected to the surface from much greater depth in the sub-mesoscale-resolving experiment, and that vertical exchange is more rapid. We conclude that the low stratification, high eddy kinetic energy flow regime that is typical of the Southern Ocean appears to be particularly susceptible to sub-mesoscale vertical transport. Vertical transport appears to depend both on topographic influence and the strength of the eddy field, suggesting possible parameterisations for submesoscale transport.

The Importance of Scale-Aware Physical Parameterizations Mesoscale to Submesoscale Permitting Simulations
Baylor Fox-Kemper,
Brown University, USA
I will discuss and compare scale-aware parameterizations for high-resolution simulations, including advective, diffusive, and viscous subgrid models for Mesoscale and Submesoscale Ocean Large Eddy Simulations. Key questions about spurious and true diapyncal effects, as well as boundary conditions and regions of instability will be addressed.

Ocean modeling on unstructured meshes.
S. Danilov,
with contributions from D. Sidorenko, T. Rakow, R. Timmermann, H. Gößling, Q. Wang and C. Wekerle.
(Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research)
Appearing finite-volume unstructured mesh codes offer the performance that is only 2-3 times slower than their structured-mesh counterparts. They may prove important in providing regional high-resolution focus at a moderate computational price, without the need of nesting. Existing finite-element codes are substantially slower, but they still can be efficient for properly selected tasks. Examples of applications run with FESOM are given, and various discretizations on unstructured meshes are discussed. 

Atmospheric responses to the North Pacific mid-latitude SST induced by western boundary currents represented in MIROC5 coupled with a nested regional ocean model
Hiroaki Tatebe1, Masao Kurogi1, Yukio Tanaka1, Hiroyasu Hasumi2

1RIGC/JAMSTEC, 2AORI/University of Tokyo, Japan
We have developed a global climate model MIROC5 coupled with a nested regional ocean model (hereafter, MIROC5n) for the purposes of improving model climate, variability. The nested regional ocean model embedded in the western North Pacific has eddy-resolving horizontal resolution. In the present study, by comparing MIROC5n and the original MIROC5, influences of the mid-latitude SST on the overlying atmosphere are demonstrated, focusing on wintertime transient eddies and large-scale circulations over the mid-latitude North Pacific. By nesting the eddy-resolving ocean model, climatological wintertime SST in the Kuroshio-Oyashio confluence zone (KO zone) becomes warmer and its meridional gradient becomes larger in MIROC5n than in MIROC5. This warmer SST is due to enhanced northward heat transport by the Kuroshio and its extension and northward retreatment of the Oyashio and subarctic fronts. Along the west coast of North America, the SST is colder in MIROC5n than in MIROC5, associated with weakening of the Aleutian low (AL). Corresponding to the SST changes and its meridional gradient in the KO zone, wintertime transient eddy activity is strengthened due to enhanced surface baroclinicity. Precipitation is also increased due to enhanced surface heat fluxes from the ocean to the atmosphere. The altered transient eddy activity results in the above-mentioned weaker AL through the eddy-mean flow interaction, leading the warmer SST in the KO zone and the colder SST along the west coast of North America. It is suggested that there is a positive feedback loop among the ocean current system in the KO zone, the transient eddies, and AL.

Model metrics and validation using ocean heat transport: New insights from observations
Stuart P. Bishop and Frank O. Bryan

National Center for Atmospheric Research, USA
Climate models are still reliant upon the Gent and McWilliams (1990,GM) parameterization to represent mesoscale oceanic heat and tracer transport.  Higher and higher resolution (HR) simulations are routinely being used as a means to develop new parameterizations and improve GM.  However, these HR simulations are rarely validated with observations.  For the first time estimates of divergent eddy heat flux (DEHF) from a HR (0.1o) simulation of the Parallel Ocean Program (POP) are compared with estimates made from an array of Current and Pressure equipped Inverted Echo Sounders (CPIES) during the Kuroshio Extension System Study (KESS).  The results from POP are in good agreement with KESS observations.  POP captures the lateral and vertical structure of mean-to-eddy energy conversion rates, which range from 2-10 cm2 s-3.  The dynamical mechanism of vertical coupling between the deep and upper ocean is the process responsible for DEHFs in POP and is in accordance with baroclinic instability observed in the Gulf Stream and Kuroshio Extension.  Meridional eddy heat transport values are ~14% larger in POP at its maximum value.  This is likely due to the more zonal path configuration in POP.  The results from this study suggest that HR POP is a useful tool for estimating eddy statistics in the Kuroshio Extension region, and thereby provide guidance in the formulation and testing of eddy mixing parameterization schemes.  Observations from dense arrays of CPIES provide a direct observational metric of eddy heat flux that is uniquely able to test this important property of HR ocean models.

A Biogeochemical Model Assessment Platform
Andreas Oschlies, Iris Kriest, Olaf Duteil (GEOMAR, Germany)
Ocean biogeochemistry has a large effect on marine biogeochemical tracer distribution, comparable to that of circulation. However, the exact form of many biogeochemical processes, and therefore their parameterisation in global models, is not well known. Using the "Transport Matrix Method" (Khatiwala et al., 2005) as an offline tool to quickly equilibrate global coupled ocean biogeochemical models, we carry out sensitivity analyses to assess the skill of different biogeochemical, physical, and numerical setups. The ultimate aim is to find the "best" (with respect to metrics tailored for specific research questions) biogeochemical model, that may eventually be integrated into e.g. high-resolution models,or models that simulate transient scenarios.

Denmark Strait circulation scheme in an eddy-resolving mode
D. Iovino (CMCC, Italy), C. Herbaut (LOCEAN, France), M.N. Houssais (LOCEAN, France), S. Masina (INGV-CMCC, Italy)
The Denmark Strait overflow (DSO), one of the main components of the thermohaline circulation in the North Atlantic, is a complex mixture of several water masses. There has been no consensus yet on where it is formed and by which way it is brought to the strait. Its primary source is generally attributed to the East Greenland Current (EGC), but recent observations and numerical studies have showed that the North Icelandic Jet (NIJ), a barotropic current flowing along the continental slope north of Iceland, has a main role in the formation of the dense overflow. Investigating the NIJ within the Nordic Seas system is a significant step to improve our understanding of the dense overflow. In this study, emphasis is given to the pathways and transports of dense water feeding the DSO. We used an ocean/sea-ice general circulation model in a nested Nordic Seas configuration at eddy-resolving (1/16° degree) resolution, forced by the atmospheric reanalysis ERA-Interim.The current system across the sill and the characteristics of the overflow water are presented and compared to recent observations. In particular, we analyze the circulation northwest of Iceland to gain better insight into the NIJ sources and to quantify its contribution to the overflowing waters.

Spin up of a high resolution climate model
Dewi Le Bars, Henk Dijkstra and Michael Kliphuis (Institute for Marine and Atmospheric Research, Utrecht University)
I will present preliminary results of the spin up of the CESM version 1.0.4 model. The CAM5 atmospheric model is used with the finite volume dynamical core at a resolution of 0.5º. For the ocean the POP2 model is used with a resolution of 0.1º. I will discuss the climate state generated by this model and comment on the technical difficulties and performance reached.

Toward Parameterizing Submesoscales
Scott Bachman (DAMPT, U. Cambridge, UK)
The oceanic submesoscale in particular is a popular topic of study in regional ocean models, due to its role as a "bridge" between the large-scale circulation and small-scale flows where mixing and dissipation can occur.   Here we present a series of numerical simulations that are being conducted to understand the role that submesoscales play in modulating the stratification of the mixed layer.  In the short term these simulations will help with our understanding of submesoscale dynamics in the presence of atmospheric forcing; in the long term, they will aid in the development of parameterizations for different submesoscale processes.

Modeling ENSO with ECHAM6-FESOM - influence of the ocean resolution
Thomas Rackow1, Dmitry Sidorenko1, Helge F. Goessling1, Axel Timmermann2, and Thomas Jung1
(1: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany, 2: IPRC, Department of Oceanography, SOEST, University of Hawaii, USA)
A new climate model supporting multi-resolution meshes in the ocean component has been established at the Alfred Wegener Institute (AWI) in Bremerhaven. The atmospheric component is ECHAM6 with T63L47 setting, while the ocean is simulated by the AWI multi-resolution model FESOM, supporting triangular unstructured meshes. Two multi-century simulations with ECHAM6-FESOM, REF and TRO, document the beneficial role of an increased tropical ocean resolution for ENSO simulations. REF features a tropical ocean resolution of about 1°, TRO employs more than 0.25° in a narrow equatorial band, with resolution gradually decreasing to 1° as in REF. Outside the tropical belt (15°N to 15°S), both meshes are identical. REF and TRO simulate a mean climate comparable to some of the best CMIP5 models. In TRO, however, both the cold tongue SST bias and the western Pacific SST standard deviation bias appear to improve along with the Nino-3 index statistics. Also, advanced ENSO diagnostics including the Nino-3.4 seasonal variance, the annual cycle representation, and its interaction with ENSO tend to improve. The robustness of these improvements is analyzed and their physical explanations are explored.

Intertropical ocean-atmosphere coupling: Representation of turbulent air-sea fluxes in IPSL-CM5
Alina Gainusa Bogdan, Pascale Braconnot (IPSL, Laboratoire des Sciences du Climat et de l’Environnement, France)
The representation of air-sea turbulent fluxes in coupled ocean-atmosphere models play an important role in the model energetics and relative role of the ocean and atmosphere in heat and water transports. The evaluation of these fluxes is difficult because of the large uncertainties in available observational product. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between the different model versions and the observations, which could represent process-oriented constraints for future model development.