Responses to future climate change: biogeochemistry

Jean-Pierre Gattuso

Laboratoire d'Océanographie de Villefranche (LOV) CNRS - Université Pierre et Marie Curie - Paris 6 Villefranche-sur-mer, France

Time-series of ocean acidification

Orr (2011)

Long-term perspective

Rapid progression of ocean acidification in the California Current System (EBUS)

Assessment

15 declarative statements assessed:

Chemical aspects

Biological and biogeochemical responses

Policy and socio-economic

aspects

Mastrandrea et al. (2010)

Summary on statements

- Chemical effects: robust evidence and high certainty
- Biological and ecological effects: much less certain
 - calcification, primary production, nitrogen fixation and biodiversity will be altered but with an unknown magnitude
 - some cannot be assessed
- Biogeochemistry, society and the economy may change; whether it will be significant or not is also unknown

Systems at risk

- Polar areas
- Deep-sea environments
- Coral reefs
- Nearshore ecosystems

Warming up, turning sour, losing breath: ocean biogeochemistry under global change

- OA not acting in isolation
- Warming increases oxygen loss and stratification (deoxygenation)
- Warming, acidification, and deoxygenation in 21st century
- Only begun to fathom ecological and biogeochemical effects

The triumvirate of ocean change (Gruber, 2011)

Changes in biogenic carbon flow in response to sea surface warming

Normal temperature

Changes in biogenic carbon flow in response to sea surface warming

Normal temperature

Elevated temperature

Very limited impact of climate change on the carbonate system

Cao et al. (2007)

Interaction between ocean warming and acidification

Coral perturbation experiments (Reynaud et al., 2003)

Interaction between ocean warming and acidification

Coral perturbation experiments (Reynaud et al., 2003)

Reconstruction of coral calcification on the GBR (De'ath et al., 2011)

Changes -> possible changes?

Ocean

Temperatures, frontal positions, circulation and connectivity, mixed layer depths, variability (SAM, Ozone, Greenhouse?), eddies?

Sea ice
Extent, timing, thickness, drift, variability

Biogeochemistry CO2, upwelling, iron inputs, pH?