

A STRATEGIC APPROACH TO MARINE PROTECTED AREAS BASED ON LARVAL CONNECTIVITY IN THE LOMBOK STRAIT

D.D.R. Santosa¹, G.A.V. P. Sudirga¹, A.R. Kartadikaria²

¹Study Program of Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology (ITB), Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia ²Research Group of Environmental and Applied Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology (ITB), Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia

INTRODUCTION

- Despite progress in establishing MPAs, global coverage is still below the 10% CBD 2020 target. Ecological connectivity, including larval dispersal and energy flow, is crucial for ensuring the effectiveness of MPAs¹.
- Frigate tuna (Auxis thazard) is a key fishery resource in West Nusa Tenggara (1,626 tons in Lombok Barat, 2022). However, CPUE has declined by arround 7.8% annually due to overfishing and a lack of seasonal **regulation**, threatening local livelihoods and industry².
- The biophysical larval dispersal model (MITgcm + OceanParcels) provides robust estimates of larval connectivity. This approach supports evidence-based MPA network design for ecologically and economically important species like Auxis thazard³.

METHODOLOGY

Model framework:

 OceanParcels (3D Lagrangian particle tracking)

Fieldset:

• horizontal velocity (u, v), vertical velocity (w), temperature (T) from MITgcm hydrodynamics results

Resolutions:

- Horizontal: ~1/150° ≈ 750 m
- Vertical with 44 layers < 274 m

Release points:

• 3,823 (unevenly distributed across 20 MPAs)

Pelagic larval duration (PLD):

• 36 days

Vertical habitat range:

• 3.5–200 m

Release duration:

• 121 consecutive days

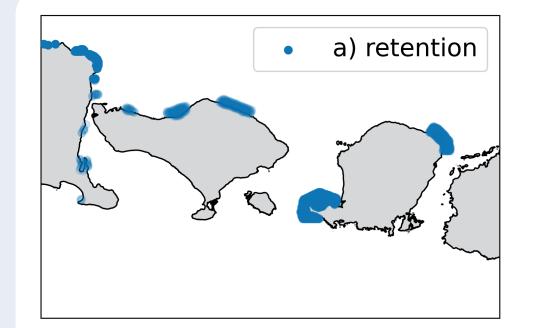
Simulation runtime:

• 152 days total

Total particles:

• 925,166

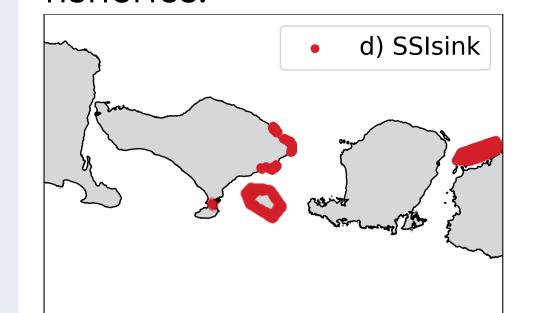
The following MPAs are included in the analysis:


- Nusa Penida Perancak
- Situbondo Kuta Selatan
- Buleleng Bali Selatan Karangasem Serangan
- Gili Sulat & Tatar Sepang
 - Melaya
 - Lawang
- Gili Air Benoa Bay
- Bali Barat Panjang
- Gili Tangkok
- Banyuwangi
- Semawang
- Gili Balu

Kramat

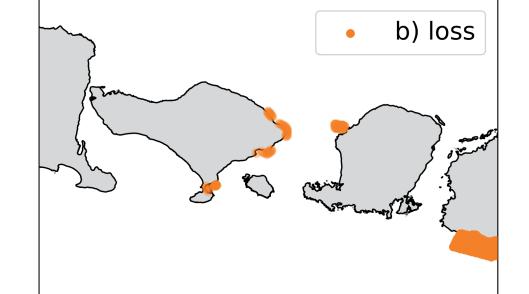
Island

Lagrangian particle advection scheme, where particle $X(t + \Delta t) = X(t) + \int \vec{V}(x, \tau) d\tau + \Delta X_b(t)$ position is updated from the local velocity field and an additional stochastic term.


RESULTS

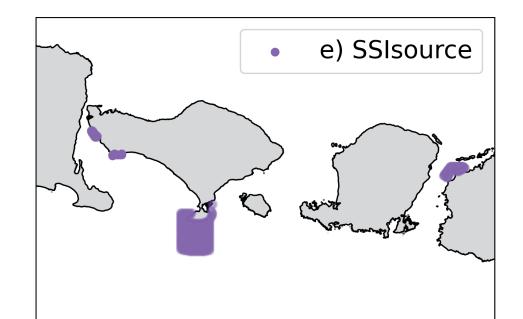
High retention (larval refugia)

Recommendation:


Prioritize local sustainability zones to secure recruitment and community-based fisheries.

sink **MPAs** Strong (SSIsink)

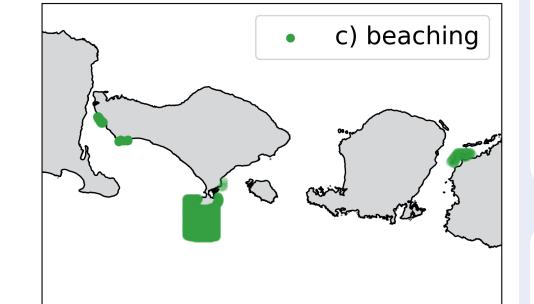
Recommendation: Ensure


fisheries align regulations with high dependency external larval input.

High loss/export (major larval donors)

Recommendation:

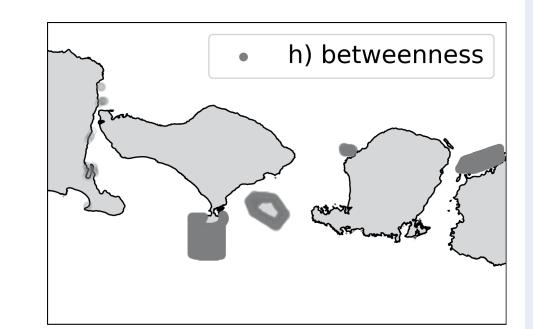
regional Manage larval sources, requiring protection strict maintain spillover.



MPAs Strong source (SSIsource)

Manage as regional seed for banks larval dispersal, with priority

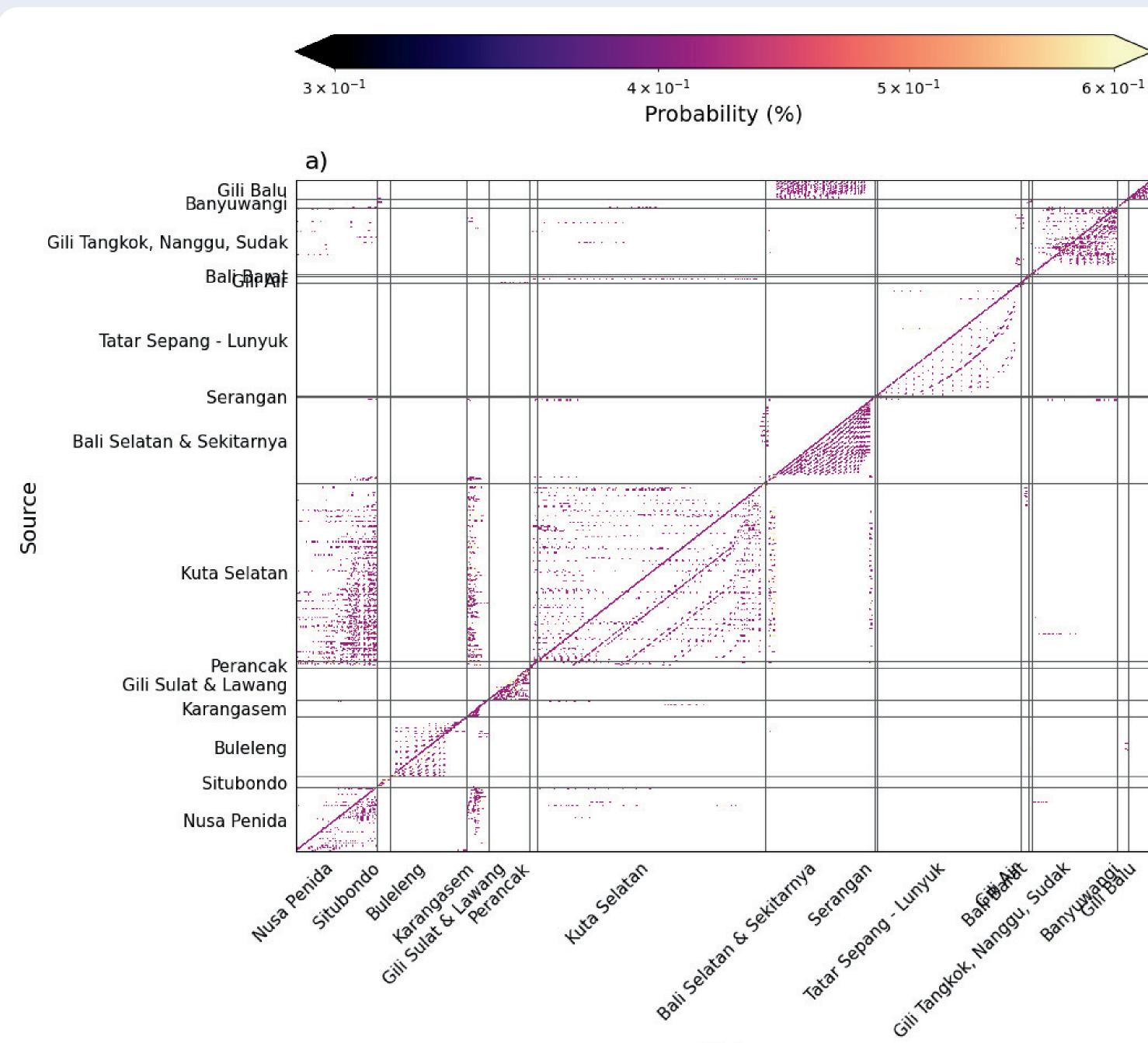
Recommendation:


monitoring.

High beaching (coastal spillover sites)

Recommendation:

small-scale Support fisheries and regulate coastal harvest to avoid overexploitation.


Key corridors/connectors (high betweenness)

Recommendation: ensure connectivity not disrupted by local stressors.

Most particles were exported to the open ocean (>90%),

exchange MPAs. among Arrival rates were highest in Bali Selatan, South Kuta, Nusa Karangasem, and Penida.

Source contributions varied, MPAs with such Karangasem and Nusa Penida acting as inter-island sources, while Buleleng and Situbondo were mainly supplied by nearby groups.

Larval trajectories were summarized into transition matrices and

analyzed as weighted, directed graphs using NetworkX (v2.5.1). Key

metrics included retention, loss, and beaching rates, source-sink indices,

and betweenness centrality to assess the ecological role of each MPA.

with only limited retention or Connectivity matrix among Marine Protected Areas (MPAs) in the Lombok Strait shows that larval dispersal is dominated by strong intra-island connections, while cross-island connectivity remains relatively weak.

CONCLUSION

- Certain MPAs function as donors and connectors, critical for sustaining regional connectivity.
- Findings highlight that designing MPA networks must account for connectivity roles, not only area size, to ensure ecological resilience and sustainable fisheries for species such as Auxis thazard.

References:

- 1. von Nordheim, H. Marine protected areas: achieving targets and ensuring connectivity. Marine Policy, 92: 1-8 (2018).
- 2. Putra, M.I.H., Satria, F., Nugraha, B., et al. Catch per unit effort (CPUE) and exploitation status of small tuna in Indonesian waters. Indonesian Fisheries Research Journal, 26(2): 111–123 (2020).
- 3. Assis, J., Tyberghein, L., Bosch, S., et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 30(1): 258–266 (2021).

Acknowledgments:

gratefully acknowledge Mahameru BRIN HPC for computational resources and Dr. Dwi Susanto for the INSTANT data. We also thank the providers of the oceanographic datasets used in this study: BIG, BATNAS, TPXO9v5, HYCOM, and Mercator Copernicus.

Fundings and HPC Support:

