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Summary and Conclusions

References

• Northern Indian Ocean (NIO) pH is decreasing at a 

rate of 0.015/dec from 1980-2019 (Chakraborty et al., 

2024).

• DIC trends primarily drives an increasing ocean 

acidification trend in the NIO.

• El-Nino and pIOD events leads to an enhancement of 

the NIO acidification.

• The alkalinity buffers this increasing ocean 

acidification by 5% in the BoB.

• Are there pockets or region where surface alkalinity is 

increasing, which may act as a buffer to this 

increasing ocean acidification?

• To answer we require long term, gap free, and 

reasonably accurate surface alkalinity data (TA), 

which forms the basis of the current study.

Objective

• An attempt has been made  to  improve the 

regional prediction of surface TA by developing 

high-resolution, gap free, observation-based 

surface TA and study the long-term changes.

• We develop a surface TA product (INCOIS_TA) 

for NIO region from 1993-2020 using a machine 

learning (ML) algorithm. 

ResultsIntroduction Ensemble & Uncertainty

Data and Methods
Results

• Three regions showing significant increasing trend in 

TA are south of 7º N, southwest coast of India, and the 

southwestern region of the BoB.

• These significant trend in TA across all the three 

regions are primarily driven by surface salinity.

• The lack of significant trend in the north of the NIO are 

observed to be associated with significant are observed 

to be associated with significant trend in anthropogenic 

AOD.

• This suggests that the anthropogenic dust deposition 

may neutralize the TA trends in the north of the NIO 

region.

• The spatial pattern of the annual mean excess alkalinity 

(Alk*) suggests AS could be more favourable for 

calcification than BoB.
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Figure 6: Data density distribution of predicted TA from various 

data products at the locations where TA observations are available

Figure 7: Trend analysis and impact of drivers

Figure 8: Annual mean values of Alk*

Assumption: 

Surface TA = f(SST, SSS, and MLD) 

These predictors serve as a proxy for temperature-
induced biological effects, dilution effect (salinity), and 

mixing effect (mixed layer depth). 

Reanalysis Data :

SST, SSS, and MLD taken from GLORYS12V1 having 

spatial resolution of 1/12º and available from 1993 to 

2021. NO3 taken from GOBH having 1/4º spatial 

resolution and is available from 1993 to 2021.

ML Algorithm :

We chose XGB algorithm as it has proven to work. 

excellently for less data sets.

Figure 1: Study domain and spatial distribution of data

Figure 2: Train and Test performance

Uncertainties:

Figure 3: Increase in ensemble size 

stabilizes the RMSE. The vertical 

line denotes the ensemble size 140, 

chosen for this study.
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Figure 4: Spatial uncertainties at each grid cell

Table 1: Statistical comparison of the surface TA between 

INCOIS TA (CMEMS TA,SODA TA, ESPER LIR, ESPER 

NN) and ship-based observations. 

Figure  5: Comparison of the seasonal composite of surface TA 

from INCOIS TA, CMEMS TA, and SODA TA for the period 

1993-2020.

We first create 150 train-

test pairs (80:20 split). 

Then, using the tuned 

hyper-parameters of the 

XGB algorithm, we 

produced 150 models. We 

progressively add the 

predictions of a common 

test set using each of these 

150 models. We check the 

ensemble size after which 

the cost function (RMSE) 

becomes stable.
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