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* Northern Indian Ocean (NIO) pH 1s decreasing at a
rate of 0.015/dec from 1980-2019 (Chakraborty et al.,
2024).

* DIC trends primarily drives an increasing ocean
acidification trend in the NIO.

* EI-Nino and pIOD events leads to an enhancement of
the NIO acidification.

 The alkalimity bufters
acidification by 5% in the BoB.

* Are there pockets or region where surface alkalinity 1s

increasing, which may act as a bu

B Al

this 1ncreasing ocean
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‘er to this

increasing ocean acidification?

* To answer we require long term, gap free, and
reasonably accurate surface alkalinity data (TA),
which forms the basis of the current study.

Objective

* An attempt has been made to improve the
regional prediction of surface TA by developing

high-resolution,

gap free, observation-based

surface TA and study the long-term changes.

* We develop a surface TA product (INCOIS TA)
for NIO region from 1993-2020 using a machine
learning (ML) algorithm.

Data and Methods
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Figure 1: Study domain and spatial distribution of data
Assumption:

Surface TA = {(SST, SSS, and MLD)
These predictors serve as a proxy for temperature-

induced biological effects, dilution e

)

‘ect (salinity), and

mixing effect (mixed layer depth).
Reanalysis Data :
SST, SSS, and MLD taken from GLORYS12V1 having
spatial resolution of 1/12° and available from 1993 to
2021. NO3 taken from GOBH having 1/4° spatial
resolution and 1s available from 1993 to 2021.

ML Algorithm :
We chose XGB algorithm as 1t has proven to work.
excellently for less data sets.
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Figure 2: Train and Test performance
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Ensemble & Uncertainty

We first create 150 train-
test pairs (80:20 split).
Then, wusing the tuned
hyper-parameters of the
XGB algorithm, we
produced 150 models. We
progressively add  the
predictions of a common
test set using each of these
150 models. We check the
ensemble size after which
the cost function (RMSE)

becomes stable.
Uncertainties:
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Figure 3: Increase in ensemble size
stabilizes the RMSE. The vertical

line denotes the ensemble size 140,
chosen for this study.
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Figure 4: Spatial uncertainties at each grid cell

Results
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Figure 5: Comparison of the seasonal composite of surface TA
from INCOIS TA, CMEMS TA, and SODA TA for the period

1993-2020.
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Figure 6: Data density distribution of predicted TA from various:

data products at the locations where TA observations are available

RMSE (pmol kg~ ') | r (p < 0.01) | PSS
| INCOIS_TA 15,5 (.59 | (.78 |
| CMEMS.TA GO.T 077 (.70
| SODA_TA T1.0) (.78 (LG5
| ESPER_LIR GG 077 (.71 |
| ESPER_NN 101 077 .72

Table 1: Statistical comparison of the surface TA between
INCOIS TA (CMEMS TA,SODA TA, ESPER LIR, ESPER
NN) and ship-based observations.
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Figure 7: Trend analysis and impact of drivers
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Figure 8: Annual mean values of Alk*

Summary and Conclusions

* Three regions showing significant increasing trend in
TA are south of 7° N, southwest coast of India, and the
southwestern region of the BoB.

* These significant trend in TA across all the three
regions are primarily driven by surface salnity.

* The lack of significant trend in the north of the NIO are
observed to be associated with significant are observed

to be associated with significant trend 1n anthropogenic
AOD.

* This suggests that the anthropogenic dust deposition
may neutralize the TA trends in the north of the NIO
region.

* The spatial pattern of the annual mean excess alkalinity
(Alk*) suggests AS could be more favourable for
calcification than BoB.
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