











# Introducing TBIMIP: The Tropical Basin Interaction Model Intercomparison Project

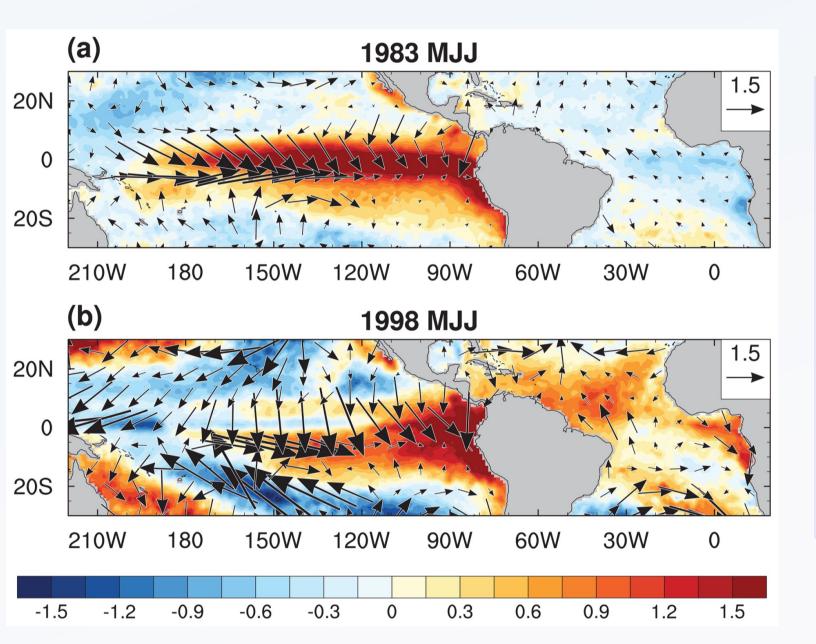
Ingo Richter\*<sup>1</sup>, Ping Chang<sup>2</sup>, Ping-Gin Chiu<sup>3</sup>, Gokhan Danabasoglu<sup>4</sup>, Takeshi Doi<sup>1</sup>, Dietmar Dommenget<sup>5</sup>, Guillaume Gastineau<sup>6</sup>, Zoe E. Gillett<sup>7</sup>, Aixue Hu<sup>4</sup>, Takahito Kataoka<sup>8</sup>, Noel S. Keenlyside<sup>3,9</sup>, Fred Kucharski<sup>10</sup>, Yuko M. Okumura<sup>11</sup>, Wonsun Park<sup>12</sup>, Malte F. Stuecker<sup>13</sup>, Andréa S. Taschetto<sup>14</sup>, Chunzai Wang<sup>15</sup>, Stephen G. Yeager<sup>4</sup>, and Sang-Wook Yeh<sup>16</sup>

<sup>1</sup>APL, JAMSTEC, <sup>2</sup>Texas A&M, <sup>3</sup>University of Bergen and BCCR, <sup>4</sup>NCAR, <sup>5</sup>Monash Univ., <sup>6</sup>Sorbonne Univ., <sup>7</sup>ARC Climate Extremes, UNSW, <sup>8</sup>CEMA, JAMSTEC, <sup>9</sup>NERSC, <sup>10</sup>ICTP, <sup>11</sup>U. of Texas at Austin, <sup>12</sup>Pusan National Univ., <sup>13</sup>IPRC, <sup>14</sup>ARC 21st Century Weather, UNSW, <sup>15</sup>South China Sea Institute of Oceanology, <sup>16</sup>Hanyang University

\*richter@jamstec.go.jp

## Summary

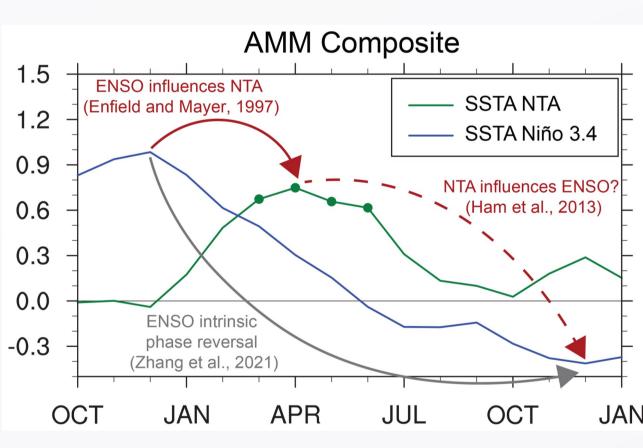
- TBIMIP: coordinated experiments for the study of interbasin interaction
- led by CLIVAR Research Focus on Tropical Basin Interaction
- data to be made available through the ESGF under CMIP6Plus
- several model centers participating
- additional participants welcome
- alternative experiments and different approaches important for comprehensive understanding of Tropical Basin Interaction (TBI)
- TBIMIP description paper published in Geoscientific Model Development (Richter et al. 2025; https://doi.org/10.5194/gmd-18-2587-2025)


# 30°N – 15°N – 0° – 15°S – ENSO 30°S – 180° 90°W 0° 90°E 180°

### Fig. 1: Schematic of tropical basin interaction

Several pathways of TBI are displayed. The solid red arrows show well-established influences, while the dashed yellow arrows show influences that are under debate or inconsistent. The variability patterns shown are ENSO (El Niño–Southern Oscillation), AMM (Atlantic Meridional Mode), AZM (Atlantic Zonal Mode), IOD (Indian Ocean Dipole), and IOBM (Indian Ocean Basin Mode).

### **Motivation for TBIMIP**


- tropical basin interaction (TBI) influences global climate variability on seasaonal-to-decadal time scales and may also shape global warming patterns
- progress in understanding TBI has been made but puzzles remain:

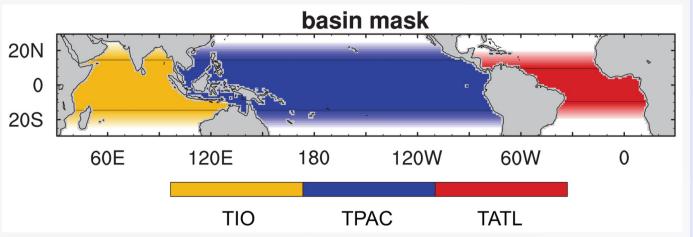


# Fig. 2: Two El Niños with opposite outcomes in the equatorial Atlantic

SST (shading) and surface winds (vectors) from the ERA5 reanalysis for May-June-July (MJJ) in (a) 1983 and (b) 1998. Both years are El Niño decaying years but the SST response in the equatorial Atlantic showed opposite signs: cooling in 1983 and warming in 1998. The reasons for this are still not fully understood.

- observational analysis is essential for understanding TBI but
  - observational record is short
  - quantifying TBI influences is difficult
  - disentangling cause and effect is challenging




## Fig. 3: Disentangling cause and effect

Composite of a positive Atlantic meridional mode (AMM) event based on ERA5. The lines show SST anomalies in the northern tropical Atlantic (NTA; green line) and the Niño 3.4 region (blue line). The fact that El Niño events tend to precede AMM+ events is well established but is the subsequent El Niño phase reversal due to intrinsic ENSO variability or partially influenced by the AMM+?

- GCM pacemaker experiments are an important additional tool
- many experiments have been performed but conflicting results exist
- potential reasons for discrepancies:
  - inconsistent experiment design
  - model biases
- TBIMIP addresses these issues by
- requiring a consistent experimental protocol
- using a multi-model approach

# TBIMIP design

• pacemaker experiments (SST restoring to observations) in each basin



# Fig. 4: Basin mask

Mask used for specifying SSTs in the three tropical ocean basins. The core restoring regions are 15S-15N in the Pacific and Indian oceans, and 10S-10N in the Atlantic. The restoring is linearly tapered off over 10° bands north and south of the core regions.

- use relatively weak restoring (15d/50m) to avoid unrealistic air-sea fluxes
- Tier 1 experiments: anomaly SST restoring
- Tier 2 experiments: full-field SST restoring
- Tier 3: reserved for additional experiments
- two branches: (1) historical experiments; (2) seasonal reforecasts

# Results from TBIMIP

- analysis of the TBIMIP output is ongoing
- a group paper is in preparation
- some of the results are unexpected...

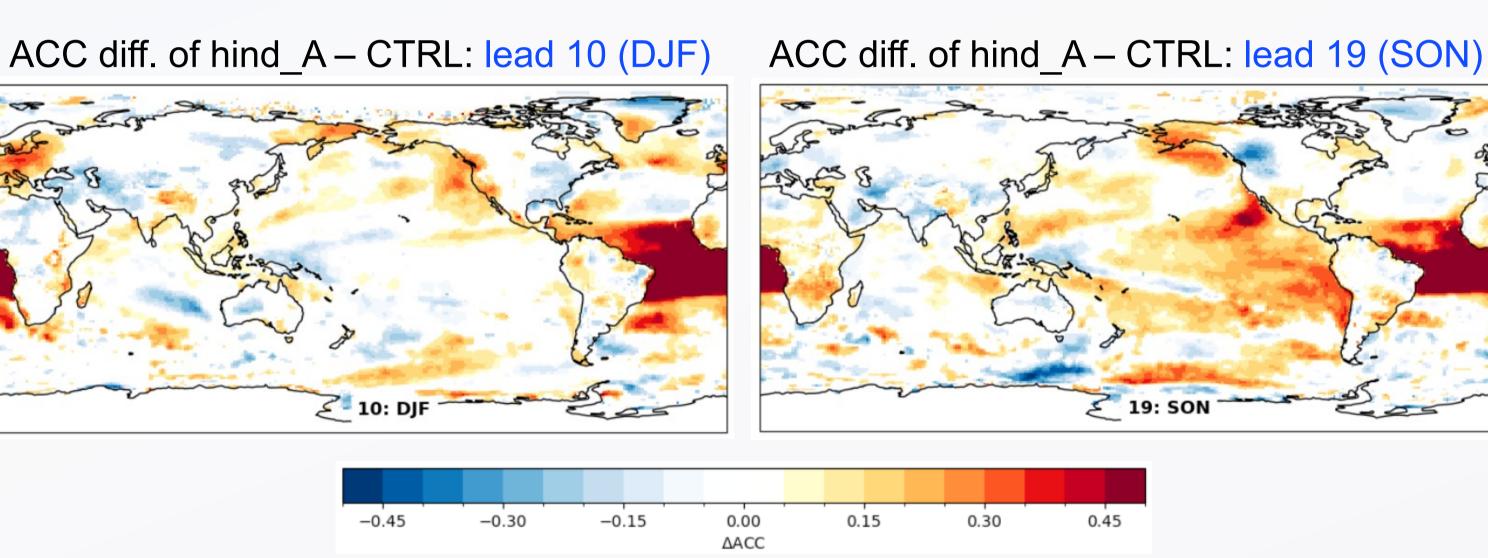



Fig. 5: Lack of ENSO skill improvement in reforecasts with Atlantic SST restoring

Difference of anomaly correlation coefficient (ACC) between a reforecast with SST restoring in the tropical Atlantic and the control reforecast without any intervention. The simulations were performed by Stephen Yeager (NCAR) using CESM2. The forecasts were initialized on February 1 of each year between 1982 and 2021. The effect of the Atlantic SST restoring is apparent in the large positive ACC difference in the Atlantic basin. In the tropical Pacific, however, there is almost no change in skill during the first forecast year (left panel). Interestingly, tropical Pacific ACC does show improvement during the second forecast year (right panel).

# Data sharing

- currently six model centers have completed their simulations
- two contributions are in preparation
- additional contributions are highly welcome

| Model         | Center            | Type of expmnt       | status         |  |
|---------------|-------------------|----------------------|----------------|--|
| CESM2         | NCAR              | hindcast+standard    | completed      |  |
| CESM2         | SCSIO, China      | Tier 2 experiments   | completed      |  |
| NorCPM        | U. of Bergen      | reforecast+standard  | completed      |  |
| SINTEX-F2     | JAMSTEC           | pacemaker reforecast | completed      |  |
| MIROC6        | JAMSTEC           | reforecast+standard  | completed      |  |
| IPSL-CM6A-LR  | IPSL, France      | standard pacemaker   | completed      |  |
| ACCESS-CM2    | CSIRO, Australia  | Tier3 expmnts        | completed      |  |
| ACCESS-ESM1-5 | CSIRO, Australia  | standard pacemaker   | in preparation |  |
| FOCI-OpenIFS  | ICCP, South Korea | standard pacemaker   | in preparation |  |

# Table 1: Models participating in the project

- currently the data is only shared among group members
- data will be made available to the community through the Earth System Grid Federation (ESGF) as part of CMIP6Plus

## **Additional experiments**

- some additional experiments have been performed by individual groups:
  - SST restoring to climatolgoy (ACCESS-CM2)
  - strong SST restoring (1d/50m) (NorCPM, SINTEX-F2)
  - different initialization months in reforecast experiments (SINTEX-F2)
  - extended reforecast integration (lead 13-24) (CESM2, MIROC6)
- additional experiments could be tried, e.g., North Atlantic restoring

# **Alternative approaches**

- important to pursue multiple lines of evidence
- examples: interbasin LIM, extended recharge oscillator, analog models