Earth’s energy imbalance since 1960 in observations and CMIP5 models

Doug Smith, Richard Allan, Andrew Coward, Rosie Eade, Pat HyderChunlei Liu, Norman Loeb, Matt Palmer, Chris Roberts and Adam Scaife
Monthly anomalies wrt 2001-2005, net incoming TOA radiation

Homogenised satellite time series created using ERA Interim and UPSCALE AMIP simulations to fill missing data and bridge gap between ERBE-WFOV and CERES satellites

Good agreement (r~0.6) with AMIP model simulations

BUT large uncertainties (~4 Wm\(^{-2}\)) in absolute values → need to anchor using observed changes in ocean heat content

Only covers period since 1985
N = net incoming radiation at top of atmosphere

Atmosphere

Ocean heat uptake

Rate of change of ocean heat content

Ocean

Land + cryosphere

- Compute rate of change of ocean heat content H_t
 - $H_t = \frac{\rho V C_p}{A} \frac{dT}{dt}$ (Wm$^{-2}$)
- Compute temperature gradients (dT/dt) using linear regression through 5 years of T
- Compare with 5 year mean N
- Global average $N \approx H_t$
- Also look at gradients $N_t = H_{tt}$
 - Overcomes uncertainty in absolute N from satellite observations
Sub-surface ocean observations

- Reasonable observations of upper 2000m from Argo since about 2005
- Far fewer sub-surface ocean observations in the past – do they contain any useful information?
Reconstructed model temperature at 300m from Jan 1953 obs locations

If covariances are known, accurate re-analyses of historical sub-surface temperature and salinity are possible

Observations: Jan 1953

Parameterised covariances: R=0.23 Actual covariances: R=0.68 Truth

Smith and Murphy 2007
Met Office Statistical Ocean ReAnalysis (MOSORA)
Temperature at 300m: June 2007 from 1960 obs

- June 2007 obs
- June 1960 obs
- Analysis using all obs
- Analysis using sub-sampled (1960) obs
Assessment of Met Office ocean analysis

Number of observations at 1000m

Heat content trend (H_t, Wm$^{-2}$)

Data withholding experiments

- Reconstruct Argo period 2008-12 using sub-sampled observations typical of historical periods
- Uncertainties in annual mean global ocean heat content range from 28 ZJ using 1950-56 obs to 8 ZJ using 2005-11 obs
- Uncertainties in global H_t range from 0.7 Wm$^{-2}$ using 1950-56 obs to 0.2 Wm$^{-2}$ using 2005-11 obs
- Possible instrument errors and regions not adequately sampled are not included

Smith et al 2015
Good agreement ($r=0.8$) between Met Office (MOSORA) and ECMWF (ORA-S4) H_t.

Reasonable agreement ($r=0.6$) between H_t and N from 1960 to 1999.

Also seen in gradients (N_t vs H_{tt})

Observed energy budget

Smith et al 2015
• Maximum H_t in 2002 is inconsistent with N from satellites and AMIP simulations
• Not supported by sea level obs (steady rise would require a dip in freshwater input to give a peak in thermosteric, but not seen)
• Also questioned by Cheng and Zhu, GRL, 2014
• Likely to be spurious!
• Not due to Argo (analysis without Argo also has spike, black asterisks)
• Ocean analyses between 2000 and 2007 (grey shading) may be unreliable

➢ Estimates of energy imbalance covering this period may need revising

Smith et al 2015
Comparison with CMIP5 coupled models

- Observation-based estimate N_0 created by averaging satellite and AMIP simulations
- Goes back to 1960
- Compare with CMIP5 coupled models
 - Need to remove CMIP5 control run values because of drifts
- Good agreement ($r=0.82$) with ensemble mean of CMIP5 coupled models

Smith et al 2015
Comparison with CMIP5 coupled models

- Absolute values of N for different periods in reasonable agreement with CMIP5 and IPCC
- BUT large uncertainties, dominated by estimates of H_t needed to anchor N – note disagreement in changes in N and U even in the most recent estimates

- Observation-based estimate N_o created by averaging satellite and AMIP simulations
- Goes back to 1960
- Compare with CMIP5 coupled models
 - Need to remove CMIP5 control run values because of drifts
- Good agreement ($r=0.82$) with ensemble mean of CMIP5 coupled models

Smith et al 2015
Observation-based and model anomalies

- Anomalies wrt 1960-2011 → reduces anchoring uncertainties
- Radiative components: absorbed shortwave (ASR, red), outgoing longwave (OLR, green)
 \[N = \text{ASR} - \text{OLR} \]
- Good agreement between models (solid) and obs (dashed) for ASR (red, \(r=0.87 \)) and OLR (green, \(r=0.80 \))
- Models simulate response to volcanoes reasonably well (at least in ensemble mean)

Smith et al 2015
Observation-based and model anomalies

- Observation-based decline in N of 0.31±0.21 Wm⁻² between late 1990s and mid-2000s
- Spans different satellites – but also seen in AMIP simulations and ocean models forced by observed winds and fluxes
- Role in warming slowdown?
- Consistent with minor volcanoes, reduced solar activity
- But driven by increasing OLR rather than reduced ASR? – though ASR lower than models
- N may also change through internal variability
- Hence relative roles of external forcing and internal variability remain unclear
- Increased uptake of heat by the ocean might not be crucial for explaining the warming slowdown

Smith et al 2015
Agreement in N since 2000 but possible cancellation of errors in ASR and OLR

Smith et al 2015
Compensating errors in OLR and ASR

Satellite obs

AMIP models

- Compensating error in CMIP models between OLR and ASR not seen against AMIP models

Smith et al 2015
N and H_t are fundamental for understanding climate variability and change.

Very sparse ocean observations before ~2005 (Argo).

However, reasonable agreement between obs global mean N and H_t between ~1960 and 1999.

- H_t obs analyses before 1999 potentially useful for process studies.
- Obs variability in H_t in 2000s likely spurious.

Use AMIP simulations, combined with satellites (from 1985), to create observation-based estimates of N (currently back to 1960).

Variability of N since 1960 dominated by volcanoes.

Well simulated by ensemble mean of CMIP5 models.
• Observation-based decline in N of 0.31±0.21 Wm$^{-2}$ between late 1990s and mid-2000s → possible role in warming pause?

 - Consistent with minor volcanoes, reduced solar activity
 - But driven by increasing OLR rather than reduced ASR? – though ASR lower than models
 - Hence relative roles of external forcing and internal variability remain unclear
 - Increased uptake of heat by the ocean might not be crucial for explaining the hiatus

• Present-day agreement between obs and model N potentially achieved through cancellation of errors in ASR and OLR
2002 H_t peak not supported by sea level

- Steady sea level rise
- Peak in H_t implies peak in thermosteric steric sea level rise (expansion)
- Would require compensating dip in freshwater input
- Glaciers: if anything, a peak in freshwater input around 2002
- Ice sheets: no evidence of reduced melting around 2002

➢ Peak in H_t therefore not supported by sea level estimates

Glaciers (Marzeion et al 2012)

Ice sheets (Shepherd et al 2012)
• Ocean reanalysis in early 2000s also questioned by Cheng and Zhu, GRL, 2014
• Suggested to be caused by spin-up of Argo data

• Not caused by spin up of Argo array in MOSORA because also seen in analysis without Argo (black asterisks)
• More work needed to understand cause!
Observation-based and model anomalies

- Large difference in 1970s
- Possible contribution from PDO shift?
- But model ensemble mean also shows increase in ASR → external forcing may play a role
- More work needed to understand

Smith et al 2015
Robust decrease in N during warming slowdown

- Satellite estimate (Allan et al 2014) spans transition from ERBS to CERES
- But decrease is also seen in:
 - AMIP atmosphere simulations forced by observed SSTs
 - Ocean model simulations forced by observed winds and fluxes

Smith et al 2015