

CLIMATE, OCEAN AND SEA ICE MODELING PROGRAM

Update on CICE activities

Elizabeth Hunke

October 30, 2009

Outline

1 The Current State of the Model

- Community Development Examples
- 3 LANL Development

Outline

- The Current State of the Model
- 2 Community Development Examples
- 3 LANL Development

CICE 3.14 August 2006

version 3.14

energy conserving, multi-layer thermodynamics ice thickness distribution with 5 categories and open water variables/tracers (for each thickness category):

ice area fraction ice/snow volume in each vertical layer ice/snow energy in each vertical layer surface temperature

elastic-viscous-plastic (EVP) dynamics incremental remapping advection energy-based, multi-category ridging and ice strength

Fortran 90 nonuniform, curvilinear, logically rectangular grids parallelization via the Message Passing Interface (MPI)

netCDF or binary input/output

users in many countries, dozens of institutions

CICE 4.0

August 2008

version 3.14

energy conserving, multi-layer thermodynamics ice thickness distribution with 5 categories and open water variables/tracers (for each thickness category):

ice area fraction ice/snow volume in each vertical layer ice/snow energy in each vertical layer surface temperature

elastic-viscous-plastic (EVP) dynamics incremental remapping advection energy-based, multi-category ridging and ice strength

Fortran 90 nonuniform, curvilinear, logically rectangular grids parallelization via the Message Passing Interface (MPI)

netCDF or binary input/output

users in many countries, dozens of institutions

version 4.0

multi-layer snow multiple-scattering radiation

ice age melt ponds

tripole grids regional configuration cache-based decomposition

more coupling/forcing options

available to collaborators through subversion repository

CICE October 2009

version 3.14

energy conserving, multi-layer thermodynamics ice thickness distribution with 5 categories and open water variables/tracers (for each thickness category):

ice area fraction ice/snow volume in each vertical layer ice/snow energy in each vertical layer surface temperature

elastic-viscous-plastic (EVP) dynamics incremental remapping advection energy-based, multi-category ridging and ice strength

Fortran 90 nonuniform, curvilinear, logically rectangular grids parallelization via the Message Passing Interface (MPI)

netCDF or binary input/output

users in many countries, dozens of institutions

version 4.0

multi-layer snow multiple-scattering radiation

ice age melt ponds algal ecosystem icebergs 3D salinity

tripole grids regional configuration cache-based decomposition

more coupling/forcing options multi-frequency history output available to collaborators through subversion repository

CICE wiki: http://oceans11.lanl.gov/trac/CICE

Outline

- The Current State of the Mode
- Community Development Examples
- 3 LANL Development

Operational Forecasting/Data Assimilation

Naval Research Laboratory

ARCc0.08-02.7 Ice Concentration: 20070904 2007090318

Melt Pond Physics

University College London

Aerosol Deposition and Cycling

National Center for Atmospheric Research

Snow SSL (4cm)
Snow Interior
Ice SSL (5cm)
Ice Interior

- Four aerosol reservoirs in the vertical
- Aerosol cycling due to ice transport, vertical melt/growth
- Melt water scavenging
- Six aerosols 2 black carbon (hydrophilic/phobic), 4 dust
- Currently affects radiative transfer

Grease and Frazil Ice

Bjerknes Centre for Climate Research, Norway

EVP on the C-grid

Alfred Wegener Institute for MITgcm

Tripole T-fold Option

U.K. Hadley Centre/University of Reading

CICE on an Unstructured Grid

University of Massachusetts

Outline

- The Current State of the Mode
- 2 Community Development Examples
- 3 LANL Development

Prognostic salinity

Green: Well flushed Ice bulk salinity Currently in CCSM

Blue: Late spring C-shaped Bulk Salinity

Cecilia Bitz

University of Washington

Prognostic salinity

Green:
Well flushed
Ice bulk salinity
Currently
in CCSM

Blue: Late spring C-shaped Bulk Salinity

Cecilia Bitz University of Washington

Adrian Turner
 University College London (now)

 LANL (Jan 2010)

Prognostic salinity

Green: Well flushed Ice bulk salinity Currently in CCSM

Blue: Late spring C-shaped Bulk Salinity

Cecilia Bitz University of Washington

- Adrian Turner
 University College London (now)
 LANL (Jan 2010)
- Wang Xiucheng

Chinese Academy of Sciences

Sea Ice Ecosystem

Sea Ice Ecosystem

- stand-alone CICE
- WOA nutrient climatology
- nitrate, silicate, ammonium, DMS(P)
- limiting by light, nutrients, melting
- coupled POP-CICE ecosystem in progress

Vertical Transport

Nicole Jeffery

Ice-ocean dynamic coupling approaches

ocean-ice stress τ_w = drag coef × quadratic $f(U_o - U_i)$

- ice-ocean stress = (ocean-ice stress)
- ice-ocean stress = div(ice internal stress) + wind stress
- various levels of "embedding"
- variable drag coef
- resolution of ocean boundary layer

Ice-ocean dynamic coupling approaches

ocean-ice stress τ_W = drag coef \times quadratic $f(U_0 - U_i)$

- ice-ocean stress = (ocean-ice stress)
- ice-ocean stress = div(ice internal stress) + wind stress
- various levels of "embedding"
- variable drag coef
- resolution of ocean boundary layer

How much is necessary for climate modeling?

- Lagrangian particles with finite size
- Berg momentum balance includes Coriolis, tilt, wind/ocean stresses, sea-ice dynamic interaction
- Sea ice ridging, momentum balance include berg interaction

Icebergs in CICE

- Lagrangian particles with finite size
- Berg momentum balance includes Coriolis, tilt, wind/ocean stresses, sea-ice dynamic interaction
- Sea ice ridging, momentum balance include berg interaction

Change in sea ice thickness due to bergs, cm

Snow

- compaction and densification
- granularization
- moisture transport
- wind redistribution
- slush and snow-ice...

Snow

- compaction and densification
- granularization
- moisture transport
- wind redistribution
- slush and snow-ice...

Help needed!

Sea Ice Constitutive Modeling

Now: Elastic-viscous-plastic (EVP)

Compare: Newton-Krylov solver for viscous-plastic

Future: Elastic-decohesive implementation?

Sea Ice Constitutive Modeling

Now: Elastic-viscous-plastic (EVP)

Compare: Newton-Krylov solver for viscous-plastic

Future: Elastic-decohesive implementation?

Help needed!

Summary: CICE 4.0 Development

Community Efforts

- data assimilation
- physical parameterizations
- numerical implementations

LANL Efforts

- prognostic salinity, ice hydrology
- ecosystem
- icebergs
- ice-ocean coupling
- constitutive modeling
- snow

