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Abstract

Eddy overturning across a shelf edge front has been investigated in a simpli-
fied model setup comprising an along-slope uniform shelf and slope with a
slope current, and is initiated with temperature and salinity data collected
off Kongsfjorden at Spitsbergen. The model results illustrate how eddy
overturning act towards flattening cross-frontal density gradients. Clock-
wise eddy overturning combined with atmospheric cooling may have lead to
an efficient cooling of the West Spitsbergen Current during the late winter
seasons of 2007 and 2008.
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Figure 1: Bathymetry of the study area, based on the IB-
CAO data set. Warm and saline Atlantic Water (AW) is flow-
ing along the continental shelf slope in the West Spitsbergen
Current (WSC).
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Figure 2: Four April sections of potential temperature at tran-
sect in Figure 1.
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Figure 3: Four April sections of σth at transect in Figure 1.

In April 2007 and 2008 there is clearly a surface bound on-shelf flow
of warm Atlantic Water (AW). In April 2002 and 2006 some rem-
nants of AW are seen at deeper levels on the shelf. The two situations
coinside with a positive surface density gradient in 2007 and 2008,
and a negative gradient in 2002 and 2006.

Idealized model set up

The numerical domain consists of a shelf and shelf slope that is uniform in the
north-south direction. A cyclic boundary condition is applied in the north
(the outflow in the north enters the domain through the southern boundary).
The initial density fronts are based on hydrographic data from the standard
transect outside Kongsfjorden, shown in Figure 1 [TN09]. MITgcm was
used for the numerical simulations, which were run on the HPC-cluster -
Snowstorm at the University of Tromsø.

Run A: April 2002 Run B: April 2007 Run C: September 2000.
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Figure 4: Modeled
along-slope mean density
fronts; initial and after
100 days model run.

Over the southern 5km
of the model domain, the
hydrography and current
is nudged towards the
sharp initial front.
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Figure 5:
Left panels: Resid-
ual mean stream func-
tion. Averaging made
within density layers.
Right panels: Eule-
rian mean stream func-
tion. Averaging made at
constant z-levels.

The stream functions
are based on ensemble
means of 12 along-slope
mean cross-slope volume
transports.

Theory on residual-mean overturning

uh

u

z Residual mean (averaged
within density layers) equals
Eulerian mean (averaged in
z-layers) pluss eddy Stokes
drift arizing from divergence
in isopycnal eddy density flux

[MM96].

uh

h̄
= ū −

(

u′ρ′

ρ̄z

)

z

+ O(α2) = ū + u∗.

The residual mean flow determines the advection of density (buoy-
ancy) in the transformed density equation in the plane perpendicular
to the mean geostrophic current (the overturning plane) [PF05]:

ρ̄t + (ū + u∗) ρ̄x + (w̄ + w∗) ρ̄z = −∇y ·

(

v′ρ′
)

diap
+ S.

Comparison data - model

The model runs are initiated with two source profiles taken from real data.
Comparisons between the modeled fronts and original data are done via a
consept we call Atlantic Water fraction FAW .

Atlantic Water fraction: Fraction between source profile of Atlantic
Water and Shelf Water, assuming mixing occur along isopycnals.
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Figure 6:
MODELED:

Left panels: TS-
relations of source pro-
files for calculating At-
lantic Water fraction.
Right panels: Distri-
bution of Atlantic Water
fraction after 100 days
model runs.
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Figure 7:
OBSERVATIONS:

Left panels: TS-
relations of observed
source profiles for cal-
culating Atlantic Water
fraction.
Right panels: Distri-
bution of observed At-
lantic Water fraction.
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Figure 8:
MODELED:

Left panels: Time series
of distributed total on-
shelf heat flux, averaged
within density layers.
Right panels: Time
series of distributed total
on-shelf heat flux, aver-
aged within z-layers.
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Figure 9:
BOX MODEL and

OBSERVATIONS:

A simple heat budget
calculation of Atlantic
Water on-shelf heatflux,
compared with time se-
ries of observed mean
temperature at the inner
shelf.
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