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Abstract:

In many aspects mesoscale oceanic eddies, opeoatin
the lengthscales of O(1-100) km are analogous ® |
cyclones and anticyclones that constitute the gbimesc
weather phenomenon. The problem of resolving the
eddies in a dynamically consistent way is very intgrat for
ocean modelling and, therefore, for global climat
predictions. For achieving high Reynolds number)(R
simulations, which are one of the goals of the nce
modelling, the models have to resolve all importsedles
of motion.

Modern ocean models enter a new phase in whi
eddies will be, at least, permitted in the numeéric



simulation. For such models advection scheme iy v
Important component. A crucial element of numeric:
advection scheme is its ability to propagate fhaibeplitude
and -phase disturbances on a discrete grid eithiout
generating spurious short-wave oscillations, bezaisot
preserving the correct dispersion relation i.espdrsion
error, or any considerable damping of the amplitude
dissipation error

A new high-resolution Eulerian numerical method |
proposed for modelling quasigeostrophic ocean dycem
eddying regimes. The method is based on a novebnse
order low-dissipative and low-dispersive consemati
advection CABARET scheme.

1. Numerical method

Consider a scalar conservation law

(1)
on a finite-difference grid which is non-uniforn
IN spacex..-x =h.,, and timet™ -t" =2,
First, take a half time step using forward-tim
central approximation,
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Ty, (2)
Then use the backward-time central-space
approximation,

Uy ~Uc + f,— 1, -0

Z.n+1/2 h+1/2 . (3)
By symmetry, the scheme Is second-ord
accurate for a sufficiently accurate evaluation
fluxes. Let's assume that the sign of the wa
speed,od,fu), IS positive everywhere. Then, wi
determinef. = (W) by assuming that

U = 2Uc —Us, (4)

With this choice, the entire scheme (2)-(4)
time-reversible. It is also second order accura

regardless of the gird non-uniformity in spac
and time, and it is non-dissipative.
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For making the CABARET solution non-
oscillatory, a simple tunable-parameter-free flt
limiter I1s Introduced through a non-linea
correction procedure for the flux variables:

U, = 2u. —Ug;
if (u, >Max(u,,uc,u.)) u,=Max(u,,u: ,u.);

if (U, < Min(u,,u.,u.)) u,=Min(u,,u. u,). (4a)



The nonlinear correction procedure Is based
the maximum principle (e.g., Boris et al., 197!
Harten et al., 1987) for characteristic wave th
arrives at point 1 from the solution domal
dependency 4-E-5, and that Is approximat
using the 3-point stencil within one cell in space

The CABARET approach is based on sevel
Important ideas:
() Fully discrete/Lagrangian property:
approximation of the entire materia
derivative

L=(9,+0,f(ua,)

rather than optimisation of the time and spa
discretisations separately, as in the stand:
Eulerian schemes;

L, =(0,f(u)d,),L=(d)+L

Xl



() Low dispersion and no-dissipation error
of the underlining finite-difference
scheme,;
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e Test: 2D compressible Euler equations

Steady zero-circulation vortex: vorticity plots
CABARET 3% order MUSCL-TVD
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(i) Non-oscillatory property: enforcing the
maximum principle on the solution as th
means for efficient treatment of the
underresolved scales;

e Modifled Shu-Osher shock/turbulenc

Interaction problem
‘ (1.515695,0.523346, 1.80500), x < —4.5,
(p.u,p) = {

(1 +0.1sin20mx, 0.0, 1). x = —4.5,
Density profile at t=5:
CABARET 4-th order WENO
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(lv) Ease of implementation for complicate
boundary conditions and non-uniforn
grids due to theompactness of stencilin
space and time (and also reduced CF
cost per time Iteration)

e Test: 2D Euler equations
Acoustic Gaussian pulse propagation on a nc
uniform grid
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grid interface



2. Double-gyre problem

The QG model of the wind-driven double-gyr
circulation Is considered in a midlatitude close
basin, which Is In the shape of a square wi
north-south and east-west rigid wallg f L] =
3840 x 3840 km). This model simulates not on
the subpolar and subtropical ocean gyres but &
the nonlinear western boundary currents, such
the Gulfstream or Kurosio, and their eastward |
extensions (e.g., Holland, 1978). The mod
stratification is represented by stacked Isopycr
layers that are dynamically coupled throuc
pressure fluctuations. The governing equatio
constitute the system of material conservati
laws for potential vorticity (PV) anomaly , with &
source term due to the meridional gradient of t
Coriolis parameter and with the additional sour
terms due to the lateral viscosity, bottom frictiol
and the wind forcing.




The system of the quasilinear hyperbolic-tyf
(e.g., Rozhdestvensky and Yanenko, 197
equations for PV anomaly and the associat
elliptic equations for velocity streamfunction
are:

0 0 0
ot e ax(Uda) 5 (i) =Fo a=1.3
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whereg=1,2, and 3 denote the top, intermediat
and the bottom isopycnal layers, respectively;
Is the Kronecker symbolp iIs the meridional



gradient of the Coriolis parametet;, = f..(xy) IS
the idealised steady L

Asin[ﬂEy/LLj for €y<y, ,

fWind (X’ y) =

L
j fory,<y<L,

Y,/ L=0.5+ 0.2 /L- 0.5), A=- 2r, /(0.9 0p,
O<x/L<l O<yl/L<1],

where the wind stress amplituderjso.en i,
and the upper-ocean densityrisic’kg /m* (e.qg.,
Berloff et al., 2007).

At the closed-basin boundarly, the partial-
slip condition Is iImposed:

0 _
(wn+vn,), =0, (Z{un +vn,) - +vn,)
a=const>0,q= 1..3

where ..., are the Cartesian components
the normal unit vector. This boundar
condition implies that the tangential velocit
component at the wall corresponds to

:O,

r




prescribed exponential-decay law based
the characteristic boundary layer thickness,
This condition corresponds to the mixe
Dirichlet-Neumann boundary condition. I
the ocean modelling practice, it Is

conventional, though not fully justified,
parameterisation for dynamically unresolve
processes near the ocean coasts.

This is applied together with the integral ma
conservation constraints (McWilliams, 1977

%ﬂ (¢, -¢,) dxdy=0 and %H(wz—wg) dxdy =



3. Resaults of QG Modelling: comparison with
the conservative Arakawa method.

3 layer QG model, PV anomaly contour levels

» Coarse-grid CABARET solution is similar to
the fine-grid Arakawa solutiolre=13300
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e Does the further parameterization help to
Improve the coarse-grid Arakawa solution?



* Yes, using of large eddy viscosity helps
reduce the dispersion error and improves the
EJ solution
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10 layer QG model, Re=1600, PV anomaly
contour levels

e Coarse-grid CABARET solution is close to
the converged solution
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 Enhanced eddy viscosity dod©T fix the
dispersion error problem with the coarse-gric
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