Quantifying North Brazil Current rings heat and mass transport using Lagrangian tracers

Roberto De Almeida and Paulo Nobre
Centro de Previsão de Tempo e Estudos Climáticos Instituto Nacional de Pesquisas Espaciais \{almeida,pnobre\}@cptec.inpe.br

Summary

 part of rings produced by the North Brazil Current (NBC). We use the Gradient Pattern Analysis (GPA) asymmetry operator to characterize the Lagrangian flow as laminar or quasi-periodic sis (GPA) asymmetry operator to characterize the Lagrangian flow as laminar or quasi-periodic
(Assireu et al. 2002); water parcels composing NBC rings exhibit a quasi-periodic behavior that breaks the velocity vector asymmetry, resulting in lower values for the coefficient. We are now combining this technique with Lagrangian tracers (Marsh and Megann 2002; De Vries and Dö̈s 2001) in order to quantify the interhemispheric heat and mass transport that is performed by NBC rings in a fully coupled numerical simulation.

Methodology
This poster describes part of an ongoing work in quantifying the interhemispheric heat and mas transport performed by North Brazil Current (NBC) rings using Lagrangian tracers in a fully cou
pled ocean-atmosphere model run. The first step consists in the determination of water parcel pled ocean-atmosphere model run. The first step consists in the determination of water parcel
that are part of the NBC rings. This is done by calculating an asymmetry factor F_{a}, an estima that are part of the NBC rings. This is done by calculating an asymmetry factor F_{a}, an estima-
tion of the flow velocity vector assymmetry. Using F_{a} we are able to qualify the water parcel tion of the flow velocity vector assymmetry. Using F_{a} we are able to quali
flow in two different regimes: a quasi-periodic regime and a laminar flow.

The coefficient F_{a} is calculated from a delaunay triangulation of a 3×3 composition of the velocity vector field: $F_{a}=(I-L) / L$. We use a 9 -point running mean to reduce noise from spurious data values.

Data

In order to validate the method we computed the asymmetry factor for 2 drifter trajectories from In order to validate the method we computed the asymmerry factor for 2 drifter trajectoris

The figure above show the calculated F_{a} for drifter 09636 . The figures to the right show the coefficient calculated for both trajectories, ploted on the map. A cutoff value of $0.77=(16-9) / 9$ is used to diff

References

- Assirre A. T., R. R. Rosa, N. L. Vijaykumar, J. A. Lorenzzetti, E. L. Rempel, F. M. Ramos, L. D. Abreu Sa M. J. A. Bolzan, A. Zanandrea, Gradient pattern analysis of short nonstationary time series: an application to
Lagrangian data from satellite tracked drifters, Physica D: Nonlinear Phenomena, Volumes $168-169,1$ Augus

(21), - Gilickson D. A., D. M. Fratantoni, C. M. Wooding, and P. L. Richardson, 2000: North Brazil Current Rings
Experiment: Surface drifter data report November $1998-J u n e 2000$ Woods Hole Oceanoraphic Institution Tech. Rep. WHOI-2000-10, 129 pp.
- Marsh, R., and A. P. Megann (2002). Tracing water
model of the slobal ocean. Ocean Modelling $4.27-53$.
,
- Vries, P.d., and K. Dö̈s, 2001: Calculating Lagrangian Trajectories Using Time-Dependent Velocity Fields. J. Atmos. Oceanic Technol., 18, 1092-1101

