A PRIMITIVE EQUATIONS MODEL STUDY OF THE EFFECT OF HEAT SOURCES OVER TROPICAL SOUTH AMERICA AND ATLANTIC

Ana Carolina Nóbile Tomaziello
Adilson Wagner Gandu
Leila Maria Véspoli de Carvalho

Department of Atmospheric Sciences
Institute of Astronomy, Geophysics and Atmospheric Sciences
University of São Paulo
São Paulo, Brazil
INTRODUCTION

- Monsoon region associated with latitudinal displacement of 10° of ITCZ, among other mechanisms (Asnani, 1993);

- Relationship between ITCZ and SAMS has not been well investigated (Garcia and Kayano, 2010).
OBJECTIVE

- Simulate and analyze the impact of heat sources associated with SACZ and ITCZ on vertical motion in tropical atmosphere.
METHODOLOGY - MODEL

- **Tropical Dynamic Model** (Gandu, 1993; Gandu and Silva Dias, 1998):
 - Non-linear primitive equations;
 - Arakawa C grid;
 - Horizontal spacing: $2.5^\circ \times 2.5^\circ$;
 - Tropical convection: heat sources.

[Diagram of the Arakawa C grid by Randall, 1994]
METODOLOGY - HEAT SOURCES

- OLR or precipitation data
- GPCP (2.5° x 2.5°) for DJF 1990-2009
 - Latent heat release (tropical deep convection)
 - Total diabatic heating
- Vertical structure: sine, maximum: 400 mb
METODOLOGY

- Experiments (30 days):
 - (f0) without SACZ and ITCZ
 - (f1) without SACZ
 - (f2) without ITCZ
 - (f12) control

- Factor separation (Stein and Alpert, 1993):

\[
\hat{f}_0 = f_0 \\
\hat{f}_1 = f_1 - f_0 \\
\hat{f}_2 = f_2 - f_0 \\
\hat{f}_{12} = f_{12} - (f_1 + f_2) + f_0
\]

Factor 1 on – ITCZ
Factor 2 on – SACZ
RESULTS

Diabatic heating (K/day)
400 mb

Simulated omega (mb/day)
400 mb - 48 h
\hat{f}_0

\hat{f}_1

\hat{f}_2

\hat{f}_{12}
CONCLUSIONS

- Upward motion in ITCZ is more intense without SACZ;

- Upward motion over SAMS region is affected when ITCZ is removed;

- Mechanism: compensatory subsidence;

- Combined effect SACZ+ITCZ impacts mainly ITCZ;

- SACZ and ITCZ excite a Gill-type response;

- ITCZ (faster Kelvin) X SACZ (faster Rossby).
ACKNOWLEDGEMENTS
REFERENCES

THANK YOU!

carolnobile@model.iag.usp.br