UK RESEARCH INTERESTS

HUGH COE

• Africa is the largest source of biomass burning on the planet.

• Aging of biomass aerosol is poorly represented in global aerosol models.

• The single scattering albedo of biomass burning aerosol is critical in the radiative forcing.

• The single scattering albedo of aged aerosol remains difficult to determine.
UK RESEARCH INTERESTS

HUGH COE

- Transformation of BB aerosol and changes in optical properties during transport
- Characterisation of aerosol and cloud across the region
- Interaction between BB and cloud
- Semi-direct effects
- transition from stratocumulus to trade wind cumulus
- Effects on NWP resulting from absorbing aerosol
Organic Mass in biomass burning plumes shows no increase over time but chemical composition changes, O:C increases

Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios

G. Capes, 1 B. Johnson, G. McFiggans, P. I. Williams, J. Haywood, J. and H. Coe 1

Received 21 January 2008; revised 15 April 2008; accepted 29 July 2008; published 30 October 2008

\[\text{Intercept} = 4.72 \times 10^{-6} \pm 1.1 \times 10^{-6} \]
\[\text{Slope} = 1.62 \times 10^{-6} \pm 8.2 \times 10^{-8} \]

Behaviour dissimilar to previous studies of BB ageing

ACPD
9, 767–836, 2009

Emissions from biomass burning in the Yucatan
R. Yokelson et al.
20-South Rationale during VOCALS

- Statistically representative cloud, thermodynamic and composition dataset for modellers.
- UK BAe-146, US DoE-G1, US NSF-C130 and Ron Brown used.
- 35 flights = 230 hours sampling time.
- 70 - 90 W, from 0-7 km, over 24 days.
- Composition statistics as a function of longitude interpreted for airmass history.
- Allen et al, 2010, ACPD, in press
- Links to Bretherton et al., 2010, ACP
• MBL well mixed
• Often enhancements in the FT – discrete layers.
• Evidence of entrainment and mixing in the cloud layer
A selection of vertical profiles over the ocean

(Haywood et al., 2004)

Figure 2. The aerosol scattering coefficient at 0.55 μm, $b_{0.55}^{sc}$, measured by the nephelometer on the C-130 aircraft. Each profile is shown by a separate colour, and in the interests of clarity a maximum of two profiles are shown for each flight. (a) Biomass burning aerosol measured during SAFARI 2000, for eight transit flights as indicated above each frame; (b) Saharan dust aerosol measured during SHADE for six flights. The absolute error in $b_{0.55}^{sc}$ is estimated as $\pm 0.3 \times 10^{-4}$ m$^{-1}$ for biomass burning aerosol (Haywood and Osborne 2000), but $\pm 0.5 \times 10^{-4}$ m$^{-1}$ for Saharan dust owing to super-micron sampling losses (Haywood et al. 2003c). See text for details.
Vertical profiles over the Sea

Profiles near Ascension Island

Profile #1

© Crown copyright Met Office
Semi Direct Effects

LES model simulations of idealised aerosol and marine StCu (Johnson et al, 2004, QJRMS)

Indoex properties for aerosol in BL. dotted line is SSA=0.88, solid line is control.
Diurnal mean direct, semi-direct and total radiative forcing for low altitude BC

But altitude is important.....

<table>
<thead>
<tr>
<th>TABLE 3. SUMMARY OF EXPERIMENT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>2-BL</td>
</tr>
<tr>
<td>2-FT</td>
</tr>
<tr>
<td>2-BLFT</td>
</tr>
<tr>
<td>2-FTS</td>
</tr>
</tbody>
</table>

The 2-day mean semi-direct, direct and total aerosol radiative forcings (W m$^{-2}$) for different aerosol layers. Z_{inv} is the height of the inversion, which varies between 600 and 650 m. Absorbing aerosol has $\omega = 0.88$ (at 0.55 μm) and scattering aerosol has $\omega = 1.00$. The aerosol mass mixing ratio is 3×10^{-8} kg kg$^{-1}$ in the aerosol layer.
‘Geoengineering’ simulations reveal interesting impacts for NWP when Namibian Sc is artificially brightened.

The Namibian Sc is brightened in HADGEM2.

The response is a drying in Brazil.
An interesting aside for NWP:

Milton and Earnshaw (2007): investigated the precipitation anomaly by comparing against detailed rain-gauge data over land areas.
An interesting aside for NWP:

When we invoke an indirect effect in SA we:-

1) Enhance the cloud reflectivity
2) Reduce the SST
3) Get an El-Nino type drying response (particularly in S. America)

SINERGEE (GERB vs UM) project:-

For 2002/2003, “the reflectivity of low-level cloud, including stratocumulus, appears too high in the model” - Richard Allan
POSSIBLE INTERESTED PARTIES

UK VOCALS Community:
Manchester, Leeds, Reading, Met Office
interests in:
- Sc clouds
- aerosol-cloud interaction
- clouds and dynamics
- improving BL processes in NWP
- high resolution climate modelling

UK AMMA Community:
Leeds, UEA, York, Leicester, Manchester, Reading, Centre for Ecology and Hydrology, Met Office, interests in:
- land-surface interactions
- monsoon development and dynamics
- gas phase chemistry in clean sub tropics
- aerosol formation and transformation
- interaction between dust and BB aerosol.
- assessment of radiative effects dust and BB.
A strawman field program

• Designed to observe key aspects of clouds and elevated biomass burning aerosols

• Also provides key measurements of stratocumulus to cumulus transition in clouds over increasing SST